ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear properties and stabilities of polaritonic crystals beyond the low-excitation-density limit

98   0   0.0 ( 0 )
 نشر من قبل Andrey Leksin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent properties of a two dimensional spatially periodic structure - polaritonic crystal (PolC) formed by trapped two-level atoms in an optical cavity array interacting with a light field, are analyzed. By considering the wave function overlapping both for photonic and atomic states, a cubic-quintic complex nonlinear Schrodinger equation (CNLSE) is derived for the dynamics of coupled atom-light states - wave function of low branch (LB) polaritons, associated with PolC in the continuous limit. The variational approach predicts that a stable ground state wave function of PolC exists but is accompanied by an oscillating width. For a negative scattering length, the wave function collapses in the presence of a small quintic nonlinearity appear due to a three body polariton interaction. Studying non-equilibrium (dissipative) dynamics of polaritons with adiabatic approximation we have shown that the collapse of PolC wave function can be prevented even in the presence of small decaying of a number of polariton particles.



قيم البحث

اقرأ أيضاً

258 - Y. Murakami , J. Kono 2008
We have studied emission properties of high-density excitons in single-walled carbon nanotubes through nonlinear photoluminescence excitation spectroscopy. As the excitation intensity was increased, all emission peaks arising from different chiraliti es showed clear saturation in intensity. Each peak exhibited a saturation value that was independent of the excitation wavelength, indicating that there is an upper limit on the exciton density for each nanotube species. We developed a theoretical model based on exciton diffusion and exciton-exciton annihilation that successfully reproduced the saturation behavior, allowing us to estimate exciton densities. These estimated densities were found to be still substantially smaller than the expected Mott density even in the saturation regime, in contrast to conventional semiconductor quantum wires.
We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pair s at a time, we observe a crossover between pure Cooper-pair and mixed Cooper-pair-quasiparticle transport. By tuning the Josephson coupling that governs Cooper-pair tunneling, we characterize Landau-Zener transitions in our device. Our data are quantitatively accounted for by a simple model including decoherence effects.
154 - S. Choi , B. Sundaram 2007
We show that a dynamically evolving two-mode Bose-Einstein condensate (TBEC) with an adiabatic, time-varying Raman coupling maps exactly onto a nonlinear Ramsey interferometer that includes a nonlinear medium. Assuming a realistic quantum state for t he TBEC, namely the SU(2) coherent spin state, we find that the measurement uncertainty of the ``path-difference phase shift scales as the standard quantum limit (1/N^{1/2}) where N is the number of atoms, while that for the interatomic scattering strength scales as 1/N^{7/5}, overcoming the Heisenberg limit of 1/N.
80 - H. Flayac , V. Savona 2016
We theoretically study the emission statistics of a weakly nonlinear photonic dimer during coherent oscillations. We show that the phase and population dynamics allow to periodically meet an optimal intensity squeezing condition resulting in a strong ly nonclassical emission statistics. By considering an exciton-polariton Josephson junction resonantly driven by a classical source, we show that a sizeable antibunching should emerge in such semiconductor system where intrinsic nonclassical signatures have remained elusive to date.
We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot operation by positioning the strained Ge channel 55~nm below the semiconductor/dielectric interface. In heterostructure field effect transistors, we measure a per colation density for two-dimensional hole transport of $2.1times10^{10}~text{cm}^{-2}$, indicative of a very low disorder potential landscape experienced by holes in the buried Ge channel. These Ge heterostructures support quiet operation of hole quantum dots and we measure charge noise levels that are below the detection limit $sqrt{S_text{E}}=0.2~mu text{eV}/sqrt{text{Hz}}$ at 1 Hz. These results establish planar Ge as a promising platform for scaled two-dimensional spin qubit arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا