ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an approach which is based on the one-particle irreducible (1PI) generating functional formalism and includes electronic correlations on all length-scales beyond the local correlations of dynamical mean field theory (DMFT). This formalism allows us to unify aspects of the dynamical vertex approximation (DGammaA) and the dual fermion (DF) scheme, yielding a consistent formulation of non-local correlations at the one- and two-particle level beyond DMFT within the functional integral formalism. In particular, the considered approach includes one-particle reducible contributions from the three- and more-particle vertices in the dual fermion approach, as well as some diagrams not included in the ladder version of DGammaA. To demonstrate the applicability and physical content of the 1PI approach, we compare the diagrammatics of 1PI, DF and DGammaA, as well as the numerical results of these approaches for the half-filled Hubbard model in two dimensions.
We investigate magnetic properties of a frustrated Heisenberg antiferromagnet with a face-centered cubic (FCC) lattice and exchange interactions between the nearest- and next-nearest neighbours, J1 and J2. In a collinear phase with the wave vector Q = (pi,pi,pi) the equations of the self-consistent spin-wave theory for the sublattice magnetization and the average short range order parameter are obtained and numerically solved. The dependence of the Neel temperature T_N on the ratio J2/J1 is obtained. It is shown, that at strong enough frustration there is a wide temperature region above T_N with strong short range magnetic order. Application of this result to description of structural phase transition between alpha and gamma-phase of Fe is considered.
The quasistatic approach is used to analyze the criterion of ferromagnetism for two-dimensional (2D) systems with the Fermi level near Van Hove (VH) singularities of the electron spectrum. It is shown that the spectrum of spin excitations (paramagnon s) is positively defined when the interaction between electrons and paramagnons, determined by the Hubbard on-site repulsion U, is sufficiently large. Due to incommensurate spin fluctuations near the ferromagnetic quantum phase transition, the critical interaction Uc remains finite at VH filling and exceeds considerably its value obtained from the Stoner criterion. A comparison with the functional renormalization group results and mean-field approximation which yields a phase separation is also performed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا