ﻻ يوجد ملخص باللغة العربية
The quasistatic approach is used to analyze the criterion of ferromagnetism for two-dimensional (2D) systems with the Fermi level near Van Hove (VH) singularities of the electron spectrum. It is shown that the spectrum of spin excitations (paramagnons) is positively defined when the interaction between electrons and paramagnons, determined by the Hubbard on-site repulsion U, is sufficiently large. Due to incommensurate spin fluctuations near the ferromagnetic quantum phase transition, the critical interaction Uc remains finite at VH filling and exceeds considerably its value obtained from the Stoner criterion. A comparison with the functional renormalization group results and mean-field approximation which yields a phase separation is also performed.
We study a ferromagnetic tendency in the two-dimensional Hubbard model near van Hove filling by using a functional renormalization-group method. We compute temperature dependences of magnetic susceptibilities including incommensurate magnetism. The f
The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi veloc
Recent experiments have observed correlated insulating and possible superconducting phases in twisted homobilayer transition metal dichalcogenides (TMDs). Besides the spin-valley locked moire bands due to the intrinsic Ising spin-orbit coupling, homo
Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from
Van Hove points are special points in the energy dispersion, where the density of states exhibits analytic singularities. When a Van Hove point is close to the Fermi level, tendencies towards density wave orders, Pomeranchuk orders, and superconducti