ترغب بنشر مسار تعليمي؟ اضغط هنا

An implementation of BFACF-style algorithms on knotted polygons in the simple cubic, face centered cubic and body centered cubic lattice is used to estimate the statistics and writhe of minimal length knotted polygons in each of the lattices. Data ar e collected and analysed on minimal length knotted polygons, their entropy, and their lattice curvature and writhe.
Let $p_n$ denote the number of self-avoiding polygons of length $n$ on a regular three-dimensional lattice, and let $p_n(K)$ be the number which have knot type $K$. The probability that a random polygon of length $n$ has knot type $K$ is $p_n(K)/p_n$ and is known to decay exponentially with length. Little is known rigorously about the asymptotics of $p_n(K)$, but there is substantial numerical evidence that $p_n(K)$ grows as $p_n(K) simeq , C_K , mu_emptyset^n , n^{alpha-3+N_K}$, as $n to infty$, where $N_K$ is the number of prime components of the knot type $K$. It is believed that the entropic exponent, $alpha$, is universal, while the exponential growth rate, $mu_emptyset$, is independent of the knot type but varies with the lattice. The amplitude, $C_K$, depends on both the lattice and the knot type. The above asymptotic form implies that the relative probability of a random polygon of length $n$ having prime knot type $K$ over prime knot type $L$ is $frac{p_n(K)/p_n}{p_n(L)/p_n} = frac{p_n(K)}{p_n(L)} simeq [ frac{C_K}{C_L} ]$. In the thermodynamic limit this probability ratio becomes an amplitude ratio; it should be universal and depend only on the knot types $K$ and $L$. In this letter we examine the universality of these probability ratios for polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices. Our results support the hypothesis that these are universal quantities. For example, we estimate that a long random polygon is approximately 28 times more likely to be a trefoil than be a figure-eight, independent of the underlying lattice, giving an estimate of the intrinsic entropy associated with knot types in closed curves.
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergod icity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
We show that the classical Rosenbluth method for sampling self-avoiding walks can be extended to a general algorithm for sampling many families of objects, including self-avoiding polygons. The implementation relies on an elementary move which is a g eneralisation of kinetic growth; rather than only appending edges to the endpoint, edges may be inserted at any vertex providing the resulting objects still lie within the same family. We implement this method using pruning and enrichment to sample self-avoiding walks and polygons. The algorithm can be further extended by mixing it with length-preserving moves, such pivots and crank-shaft moves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا