ﻻ يوجد ملخص باللغة العربية
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This technique is particularly useful for computationally difficult problems such as quantum many-body systems. For reasons of simplicity and
Recent results for the Ising model with first ($J_1$) and second ($J_2$) neighbour interactions on the body-centered cubic (bcc) lattice suggest that this model can host signatures of strong frustration, including Schottky anomalies and residual entr
An implementation of BFACF-style algorithms on knotted polygons in the simple cubic, face centered cubic and body centered cubic lattice is used to estimate the statistics and writhe of minimal length knotted polygons in each of the lattices. Data ar
By means of ab initio calculations within the density functional theory, we have found that B80 fullerenes can condense to form stable face-centered-cubic fcc solids. It is shown that when forming a crystal, B80 cages are geometrically distorted, the
We discuss the role of quantum fluctuations in Heisenberg antiferromagnets on face-centered cubic lattice with small dipolar interaction in which the next-nearest-neighbor exchange coupling dominates over the nearest-neighbor one. It is well known th