ترغب بنشر مسار تعليمي؟ اضغط هنا

On the universality of knot probability ratios

375   0   0.0 ( 0 )
 نشر من قبل Andrew Rechntizer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $p_n$ denote the number of self-avoiding polygons of length $n$ on a regular three-dimensional lattice, and let $p_n(K)$ be the number which have knot type $K$. The probability that a random polygon of length $n$ has knot type $K$ is $p_n(K)/p_n$ and is known to decay exponentially with length. Little is known rigorously about the asymptotics of $p_n(K)$, but there is substantial numerical evidence that $p_n(K)$ grows as $p_n(K) simeq , C_K , mu_emptyset^n , n^{alpha-3+N_K}$, as $n to infty$, where $N_K$ is the number of prime components of the knot type $K$. It is believed that the entropic exponent, $alpha$, is universal, while the exponential growth rate, $mu_emptyset$, is independent of the knot type but varies with the lattice. The amplitude, $C_K$, depends on both the lattice and the knot type. The above asymptotic form implies that the relative probability of a random polygon of length $n$ having prime knot type $K$ over prime knot type $L$ is $frac{p_n(K)/p_n}{p_n(L)/p_n} = frac{p_n(K)}{p_n(L)} simeq [ frac{C_K}{C_L} ]$. In the thermodynamic limit this probability ratio becomes an amplitude ratio; it should be universal and depend only on the knot types $K$ and $L$. In this letter we examine the universality of these probability ratios for polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices. Our results support the hypothesis that these are universal quantities. For example, we estimate that a long random polygon is approximately 28 times more likely to be a trefoil than be a figure-eight, independent of the underlying lattice, giving an estimate of the intrinsic entropy associated with knot types in closed curves.

قيم البحث

اقرأ أيضاً

124 - M.M. Tsypin , H.W.J. Blote 1999
We study the probability distribution P(M) of the order parameter (average magnetization) M, for the finite-size systems at the critical point. The systems under consideration are the 3-dimensional Ising model on a simple cubic lattice, and its 3-sta te generalization known to have remarkably small corrections to scaling. Both models are studied in a cubic box with periodic boundary conditions. The model with reduced corrections to scaling makes it possible to determine P(M) with unprecedented precision. We also obtain a simple, but remarkably accurate approximate formula describing the universal shape of P(M).
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step le ngth. We measure first-passage probability to touch the absorbing sphere of radius $R$ in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.
We present a self-contained discussion of the universality classes of the generalized epidemic process (GEP) on Poisson random networks, which is a simple model of social contagions with cooperative effects. These effects lead to rich phase transitio nal behaviors that include continuous and discontinuous transitions with tricriticality in between. With the help of a comprehensive finite-size scaling theory, we numerically confirm static and dynamic scaling behaviors of the GEP near continuous phase transitions and at tricriticality, which verifies the field-theoretical results of previous studies. We also propose a proper criterion for the discontinuous transition line, which is shown to coincide with the bond percolation threshold.
Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has been reported [X. S. Chen and V. Dohm, Phys. Rev. E {bf 66}, 016102 (2002)]. We reconsider the arguments leading to this observation and show tha t there is no such leading nonuniversal term in systems with short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier transform of the interaction potential. We also conclude that lattice and continuum models then produce results in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are consistent with the {em universal} character of the Casimir force in systems with short-ranged interactions. The effects due to dispersion forces are discussed for systems with periodic or realistic boundary conditions. In contrast to systems with short-ranged interactions, for $L/xi gg 1$ one observes leading finite-size contributions governed by power laws in $L$ due to the subleading long-ranged character of the interaction, where $L$ is the finite system size and $xi$ is the correlation length.
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using ort hogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا