ترغب بنشر مسار تعليمي؟ اضغط هنا

This is a reply to the comment from Khemani, Moessner and Sondhi (KMS) [arXiv:2109.00551] on our manuscript [Phys. Rev. Lett. 118, 030401 (2017)]. The main new claim in KMS is that the short-ranged model does not support an MBL DTC phase. We show tha t, even for the parameter values they consider and the system sizes they study, the claim is an artifact of an unusual choice of range for the crucial plots. Conducting a standard finite-size scaling analysis on the same data strongly suggests that the system is in fact a many-body localized (MBL) discrete time crystal (DTC). Furthermore, we have carried out additional simulations at larger scales, and provide an analytic argument, which fully support the conclusions of our original paper. We also show that the effect of boundary conditions, described as essential by KMS, is exactly what one would expect, with boundary effects decreasing with increasing system size. The other points in KMS are either a rehashing of points already in the literature (for the long-ranged model) or are refuted by a proper finite-size scaling analysis.
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically driven (Floquet) spin chains, this model does not rely upon microscopic symmetry protection: Instead, the edge states are protected purely by emergent dynamical symmetries. We explore the dynamical signatures of this Emergent Dynamical Symmetry-Protected Topological (EDSPT) order through exact numerics, time evolving block decimation, and analytic high-frequency expansion, finding evidence that the EDSPT is a stable dynamical phase protected by bulk many-body localization up to (at least) stretched-exponentially long time scales, and possibly beyond. We argue that EDSPTs are special to the quasiperiodically driven setting, and cannot arise in Floquet systems. Moreover, we find evidence of a new type of boundary criticality, in which the edge spin dynamics transition from quasiperiodic to chaotic, leading to bulk thermalization.
Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary scattering matrices, that can also be viewed as representing non-equilibrium Floquet systems. The resulting Floquet bands have zero Chern number, and are i nstead characterized by a chiral Floquet (CF) winding number. This begs the question: How can a model without Chern number describe IQH systems? We resolve this apparent paradox by showing that non-zero Chern number is recovered from the network model via the energy dependence of network model scattering parameters. This relationship shows that, despite their topologically distinct origins, IQH and CF topology-changing transitions share identical universal scaling properties.
Two-dimensional arrays of periodically driven qubits can host inherently dynamical topological phases with anomalous chiral edge dynamics. These chiral Floquet phases are formally characterized by a dynamical topological invariant, the chiral unitary index. Introducing a quantity called the chiral mutual information, we show that this invariant can be precisely interpreted in terms of a quantized chiral transfer of quantum information along the edge of the system, and devise a physical setup to measure it.
We uncover an infinite family of time-reversal symmetric 3d interacting topological insulators of bosons or spins, in time-periodically driven systems, which we term Floquet topological paramagnets (FTPMs). These FTPM phases exhibit intrinsically dyn amical properties that could not occur in thermal equilibrium, and are governed by an infinite set of $Z_2$-valued topological invariants, one for each prime number. The topological invariants are physically characterized by surface magnetic domain walls that act as unidirectional quantum channels, transferring quantized packets of information during each driving period. We construct exactly solvable models realizing each of these phases, and discuss the anomalous dynamics of their topologically protected surface states. Unlike previous encountered examples of Floquet SPT phases, these 3d FTPMs are not captured by group cohomology methods, and cannot be obtained from equilibrium classifications simply by treating the discrete time-translation as an ordinary symmetry. The simplest such FTPM phase can feature anomalous $Z_2$ (toric code) surface topological order, in which the gauge electric and magnetic excitations are exchanged in each Floquet period, which cannot occur in a pure 2d system without breaking time reversal symmetry.
Dirac semi-metals show a linear electronic dispersion in three dimension described by two copies of the Weyl equation, a theoretical description of massless relativistic fermions. At the surface of a crystal, the breakdown of fermion chirality is exp ected to produce topological surface states without any counterparts in high-energy physics nor conventional condensed matter systems, the so-called Fermi Arcs. Here we present Shubnikov-de Haas oscillations involving the Fermi Arc states in Focused Ion Beam prepared microstructures of Cd$_3$As$_2$. Their unusual magnetic field periodicity and dependence on sample thickness can be well explained by recent theoretical work predicting novel quantum paths weaving the Fermi Arcs together with chiral bulk states, forming Weyl orbits. In contrast to conventional cyclotron orbits, these are governed by the chiral bulk dynamics rather than the common momentum transfer due to the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.
We study the dynamical melting of hot one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By ac counting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا