ترغب بنشر مسار تعليمي؟ اضغط هنا

177 - Andrew Schopieray 2021
This is a study of weakly integral braided fusion categories with elementary fusion rules to determine which possess nondegenerately braided extensions of theoretically minimal dimension, or equivalently in this case, which satisfy the minimal modula r extension conjecture. We classify near-group braided fusion categories satisfying the minimal modular extension conjecture; the remaining Tambara-Yamagami braided fusion categories provide arbitrarily large families of braided fusion categories with identical fusion rules violating the minimal modular extension conjecture. These examples generalize to braided fusion categories with the fusion rules of the representation categories of extraspecial $p$-groups for any prime $p$, which possess a minimal modular extension only if they arise as the adjoint subcategory of a twisted double of an extraspecial $p$-group.
50 - Andrew Schopieray 2020
We prove there exist infinitely many inequivalent fusion categories whose Grothendieck rings do not admit any pseudounitary categorifications.
72 - Andrew Schopieray 2020
We prove several results in the theory of fusion categories using the product (norm) and sum (trace) of Galois conjugates of formal codegrees. First, we prove that finitely-many fusion categories exist up to equivalence whose global dimension has a f ixed norm. Furthermore, with two exceptions, all formal codegrees of spherical fusion categories with square-free norm are rational integers. This implies, with three exceptions, that every spherical braided fusion category whose global dimension has prime norm is pointed. The reason exceptions occur is related to the classical Schur-Siegel-Smyth problem of describing totally positive algebraic integers of small absolute trace.
From a unifying lemma concerning fusion rings, we prove a collection of number-theoretic results about fusion, braided, and modular tensor categories. First, we prove that every fusion ring has a dimensional grading by an elementary abelian 2-group. As a result, we bound the order of the multiplicative central charge of arbitrary modular tensor categories. We also introduce Galois-invariant subgroups of the Witt group of nondegenerately braided fusion categories corresponding to algebraic number fields generated by Frobenius-Perron dimensions. Lastly, we provide a complete description of the fields generated by the Frobenius-Perron dimensions of simple objects in $mathcal{C}(mathfrak{g},k)$, the modular tensor categories arising from the representation theory of quantum groups at roots of unity, as well as the fields generated by their Verlinde eigenvalues.
61 - Andrew Schopieray 2019
Here we constructively classify quadratic $d$-numbers: algebraic integers in quadratic number fields generating Galois-invariant ideals. We prove the subset thereof maximal among their Galois conjugates in absolute value is discrete in $mathbb{R}$. O ur classification provides a characterization of those real quadratic fields containing a unit of norm -1 which is known to be equivalent to the existence of solutions to the negative Pell equation. The notion of a weakly quadratic fusion category is introduced whose Frobenius-Perron dimension necessarily lies in this discrete set. Factorization, divisibility, and boundedness results are proven for quadratic $d$-numbers allowing a systematic study of weakly quadratic fusion categories which constitute essentially all known examples of fusion categories having no known connection to classical representation theory.
30 - Andrew Schopieray 2018
A diverse collection of fusion categories may be realized by the representation theory of quantum groups. There is substantial literature where one will find detailed constructions of quantum groups, and proofs of the representation-theoretic propert ies these algebras possess. Here we will forego technical intricacy as a growing number of researchers study fusion categories disjoint from Lie theory, representation theory, and a laundry list of other obstacles to understanding the mostly combinatorial, geometric, and numerical descriptions of the examples of fusion categories arising from quantum groups. This expository piece aims to create a self-contained guide for researchers to study from a computational standpoint with only the prerequisite knowledge of fusion categories.
101 - Andrew Schopieray 2016
The Witt group of nondegenerate braided fusion categories $mathcal{W}$ contains a subgroup $mathcal{W}_text{un}$ consisting of Witt equivalence classes of pseudo-unitary nondegenerate braided fusion categories. For each finite-dimensional simple Lie algebra $mathfrak{g}$ and positive integer $k$ there exists a pseudo-unitary category $mathcal{C}(mathfrak{g},k)$ consisting of highest weight integerable $hat{g}$-modules of level $k$ where $hat{mathfrak{g}}$ is the corresponding affine Lie algebra. Relations between the classes $[mathcal{C}(mathfrak{sl}_2,k)]$, $kgeq1$ have been completely described in the work of Davydov, Nikshych, and Ostrik. Here we give a complete classification of relations between the classes $[mathcal{C}(mathfrak{sl}_3,k)]$, $kgeq1$ with a view toward extending these methods to arbitrary simple finite dimensional Lie algebras $mathfrak{g}$ and positive integer levels $k$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا