ﻻ يوجد ملخص باللغة العربية
The Witt group of nondegenerate braided fusion categories $mathcal{W}$ contains a subgroup $mathcal{W}_text{un}$ consisting of Witt equivalence classes of pseudo-unitary nondegenerate braided fusion categories. For each finite-dimensional simple Lie algebra $mathfrak{g}$ and positive integer $k$ there exists a pseudo-unitary category $mathcal{C}(mathfrak{g},k)$ consisting of highest weight integerable $hat{g}$-modules of level $k$ where $hat{mathfrak{g}}$ is the corresponding affine Lie algebra. Relations between the classes $[mathcal{C}(mathfrak{sl}_2,k)]$, $kgeq1$ have been completely described in the work of Davydov, Nikshych, and Ostrik. Here we give a complete classification of relations between the classes $[mathcal{C}(mathfrak{sl}_3,k)]$, $kgeq1$ with a view toward extending these methods to arbitrary simple finite dimensional Lie algebras $mathfrak{g}$ and positive integer levels $k$.
This is a study of weakly integral braided fusion categories with elementary fusion rules to determine which possess nondegenerately braided extensions of theoretically minimal dimension, or equivalently in this case, which satisfy the minimal modula
We introduce a finiteness property for braided fusion categories, describe a conjecture that would characterize categories possessing this, and verify the conjecture in a number of important cases. In particular we say a category has F if the associa
In this paper we study an approximation of tensor product of irreducible integrable $hat{mathfrak{sl}_2}$ representations by infinite fusion products. This gives an approximation of the corresponding coset theories. As an application we represent cha
We show any slightly degenerate weakly group-theoretical fusion category admits a minimal extension. Let $d$ be a positive square-free integer, given a weakly group-theoretical non-degenerate fusion category $mathcal{C}$, assume that $text{FPdim}(mat
This is the first part of a series of two papers aiming to construct a categorification of the braiding on tensor products of Verma modules, and in particular of the Lawrence--Krammer--Bigelow representations. In this part, we categorify all tensor