ﻻ يوجد ملخص باللغة العربية
Here we constructively classify quadratic $d$-numbers: algebraic integers in quadratic number fields generating Galois-invariant ideals. We prove the subset thereof maximal among their Galois conjugates in absolute value is discrete in $mathbb{R}$. Our classification provides a characterization of those real quadratic fields containing a unit of norm -1 which is known to be equivalent to the existence of solutions to the negative Pell equation. The notion of a weakly quadratic fusion category is introduced whose Frobenius-Perron dimension necessarily lies in this discrete set. Factorization, divisibility, and boundedness results are proven for quadratic $d$-numbers allowing a systematic study of weakly quadratic fusion categories which constitute essentially all known examples of fusion categories having no known connection to classical representation theory.
The Mordell-Weil groups $E(mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(mathbb{Q})$ and the ideal class groups $mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) in mathbb{Z}^2$, we def
We develop further the theory of $q$-deformations of real numbers introduced by Morier-Genoud and Ovsienko, and focus in particular on the class of real quadratic irrationals. Our key tool is a $q$-deformation of the modular group $PSL_q(2,mathbb{Z})
We give an explicit construct of a harmonic weak Maass form $F_{Theta}$ that is a lift of $Theta^3$, where $Theta$ is the classical Jacobi theta function. Just as the Fourier coefficients of $Theta^3$ are related to class numbers of imaginary quadrat
The Apery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=sum_{k=0}^{n}{binom{n+k}{2k}}^2{binom{2k}{k}}^2 {rm and } f_n=sum_{k=0}^{n}{binom{n}{k}}^3(n=0, 1, cdots,).$$ In this paper, we prove three supercongruences for Apery
Generalizing the concept of a perfect number is a Zumkeller or integer perfect number that was introduced by Zumkeller in 2003. The positive integer $n$ is a Zumkeller number if its divisors can be partitioned into two sets with the same sum, which w