ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the results of optical monitoring for a sample of 11 blazars including 10 BL Lacs and 1 Flat Spectrum Radio Quasar (FSRQ). We have measured the multiband optical flux and colour variations in these blazars on intra-day and short-term timesc ales of months and have limited data for 2 more blazars. These photometric observations were made during 2009 to 2011, using six optical telescopes, four in Bulgaria, one in Greece and one in India. On short-term timescales we found significant flux variations in 9 of the sources and colour variations in 3 of them. Intra-day variability was detected on 6 nights for 2 sources out of the 18 nights and 4 sources for which we collected such data. These new optical observations of these blazars plus data from our previous published papers (for 3 more blazars) were used to analyze their spectral flux distributions in the optical frequency range. Our full sample for this purpose includes 6 high-synchrotron-frequency-peaked BL Lacs (HSPs), 3 intermediate-synchrotron-frequency-peaked BL Lacs (ISPs) and 6 low-synchrotron-frequency-peaked BL Lacs (LSPs; including both BL Lacs and FSRQs). We also investigated the spectral slope variability and found that the average spectral slopes of LSPs show a good accordance with the Synchrotron Self-Compton (SSC) loss dominated model. Our analysis supports previous studies that found that the spectra of the HSPs and FSRQs have significant additional emission components. The spectra of all these HSPs and LSPs get flatter when they become brighter, while for FSRQs the opposite appears to hold. This supports the hypothesis that there is a significant thermal contribution to the optical spectrum for FSRQs.
We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The v ariability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the sources intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL,Lac type object, is remarkably high.
229 - Bindu Rani 2010
Over the course of three hours on 27 December 2008 we obtained optical (R-band) observations of the blazar S5 0716+714 at a very fast cadence of 10 s. Using several different techniques we find fluctuations with an approximately 15-minute quasi-perio d to be present in the first portion of that data at a > 3 sigma confidence level. This is the fastest QPO that has been claimed to be observed in any blazar at any wavelength. While this data is insufficient to strongly constrain models for such fluctuations, the presence of such a short timescale when the source is not in a very low state seems to favor the action of turbulence behind a shock in the blazars relativistic jet.
We selected a sample of 24 XMM-Newton light curves (LCs) of four high energy peaked blazars, PKS 0548-322, ON 231, 1ES 1426+428 and PKS 2155-304. These data comprise continuous light curves of 7.67h to 18.97h in length. We searched for possible quasi -periodic oscillations (QPO) and intra-day variability (IDV) timescales in the LCs of these blazars. We found a likely QPO in one LC of PKS 2155-304 which was reported elsewhere (Lachowicz et al. 2009). In the remaining 23 LCs we found hints of possible weak QPOs in one LC of each of ON 231 and PKS 2155-304, but neither is statistically significant. We found IDV timescales that ranged from 15.7 ks to 46.8 ks in 8 LCs. In 13 LCs any variability timescales were longer than the length of the data. Assuming the possible weak QPO periods in the blazars PKS 2155-304 and ON 231 are real and are associated with the innermost portions of their accretion disk, we can estimate that their central black hole masses exceed 1.2 $times$ 10$^{7}$ M$_{odot}$. Emission models for radio-loud active galactic nuclei (AGN) that could explain our results are briefly discussed.
116 - Alok C. Gupta 2009
We withdraw our claim that a component in an XMM-Newton satellite light curve of the BL Lacertae object S5 0716 + 714 shows quasi-periodic oscillations (QPOs) of $sim$30 minutes. Although both our original periodogram and wavelet analyses gave consis tent results, the data do not lead to a statistically significant result once red-noise at low frequencies is properly taken into account for periodogram analyses.
74 - Bindu Rani 2009
We have performed a structure function analysis of the Rossi X-ray Timing Explorer All Sky Monitor data to search for variability in 24 blazars using data trains that each exceed 12 years. Although 20 of them show nominal periods though this techniqu e, the great majority of these `periods are clearly related to yearly variations arising from the instrument.Nonetheless, an apparently real periodic component of about 17 days was detected for the blazar AO 0235+164 and it was confirmed by discrete correlation function and periodogram analyses. For 1ES 2321+419 a component of variability with a near periodicity of about 420 days was detected by all of these methods. We discuss several possible explanations for these nearly periodic components and conclude that they most likely arise from the intersections of a shock propagating down a relativistic jet that possesses a helical structure.
The softening process observed in the steep decay phase of early X-ray afterglows of Swift bursts has remained a puzzle since its discovery. The softening process can also be observed in the later phase of the bursts and its cause has also been unkno wn. Recently, it was suggested that, influenced by the curvature effect, emission from high latitudes would shift the Band function spectrum from higher energy band to lower band, and this would give rise to the observed softening process accompanied by a steep decay of the flux density. The curvature effect scenario predicts that the terminating time of the softening process would be correlated with the duration of the process. In this paper, based on the data from the UNLV GRB group web-site, we found an obvious correlation between the two quantities. In addition, we found that the softening process can be divided into two classes: the early type softening ($t_{s,max}leq 4000s$) and the late type softening ($t_{s,max} > 4000s$). The two types of softening show different behaviors in the duration vs. terminating time plot. In the relation between the variation rates of the flux density and spectral index during the softening process, a discrepancy between the two types of softening is also observed. According to their time scales and the discrepancy between them, we propose that the two types are of different origins: the early type is of internal shock origin and the late type is of external shock origin. The early softening is referred to the steep decay just following the prompt emission, whereas the late decay typically conceives the transition from flat decay to late afterglow decay. We suspect that there might be a great difference of the Lorentz factor in two classes which is responsible for the observed discrepancy.
63 - Alok C. Gupta 2008
In this paper, we report results of our near-infrared (NIR) photometric variability studies of the BL Lacertae object S5 0716+714. NIR photometric observations spread over 7 nights during our observing run April 2-9, 2007 at 1.8 meter telescope equip ped with KASINICS (Korea Astronomy and Space Science Institute Near Infrared Camera System) and J, H, and Ks filters at Bohyunsan Optical Astronomy Observatory (BOAO), South Korea. We searched for intra-day variability, short term variability and color variability in the BL Lac object. We have not detected any genuine intra-day variability in any of J, H, and Ks passbands in our observing run. Significant short term variability ~ 32.6%, 20.5% and 18.2% have been detected in J, H, Ks passbands, respectively, and ~ 11.9% in (J-H) color.
We present results of a periodicity search of 20 intra-day variable optical light curves of the blazar S5 0716+714, selected from a database of 102 light curves spanning over three years. We use a wavelet analysis technique along with a randomization test and find strong candidates for nearly periodic variations in eight light curves, with probabilities ranging from 95% to >99%. This is the first good evidence for periodic, or more-precisely, quasi-periodic, components in the optical intra-day variable light curves of any blazar. Such periodic flux changes support the idea that some active galactic nuclei variability, even in blazars, is based on accretion disk fluctuations or oscillations. These intra-day variability time scales are used to estimate that the central black hole of the blazar S5 0716+714 has a mass > 2.5 times 10^6$ M$_{odot}$. As we did not find any correlations between the flux levels and intra-day variability time scales, it appears that more than one emission mechanism is at work in this blazar.
107 - Alok C. Gupta ARIES 2008
We report the first results of quasi-simultaneous two passband optical monitoring of six quasi-stellar objects to search for micro-variability. We carried out photometric monitoring of these sources in an alternating sequence of R and V passbands, fo r five radio-quiet quasi-stellar objects (RQQSOs), 0748+291, 0824+098, 0832+251, 1101+319, 1225+317 and one radio-loud quasi-stellar object (RLQSO), 1410+429. No micro-variability was detected in any of the RQQSOs, but convincing micro-variability was detected in the RLQSO on two successive nights it was observed. Using the compiled data of optical micro-variability of RQQSOs till date, we got the duty cycle for micro-variability in RQQSOs is $sim$ 10%. The present investigation indicates that micro-variability is not a persistent property of RQQSOs but an occasional incident.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا