ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-Periodic Oscillations of ~ 15 minutes in the Optical Light Curve of the BL Lac S5 0716+714

228   0   0.0 ( 0 )
 نشر من قبل Alok Gupta Dr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bindu Rani




اسأل ChatGPT حول البحث

Over the course of three hours on 27 December 2008 we obtained optical (R-band) observations of the blazar S5 0716+714 at a very fast cadence of 10 s. Using several different techniques we find fluctuations with an approximately 15-minute quasi-period to be present in the first portion of that data at a > 3 sigma confidence level. This is the fastest QPO that has been claimed to be observed in any blazar at any wavelength. While this data is insufficient to strongly constrain models for such fluctuations, the presence of such a short timescale when the source is not in a very low state seems to favor the action of turbulence behind a shock in the blazars relativistic jet.

قيم البحث

اقرأ أيضاً

114 - Alok C. Gupta 2009
We withdraw our claim that a component in an XMM-Newton satellite light curve of the BL Lacertae object S5 0716 + 714 shows quasi-periodic oscillations (QPOs) of $sim$30 minutes. Although both our original periodogram and wavelet analyses gave consis tent results, the data do not lead to a statistically significant result once red-noise at low frequencies is properly taken into account for periodogram analyses.
We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The v ariability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the sources intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL,Lac type object, is remarkably high.
87 - B. Danila , A. Marcu , G. Mocanu 2014
This paper reports on the statistical behaviour of the optical IntraDay Variability of BL Lac S5 0716+714. Available IntraDay Variability data in the optical is tested to see whether or not the magnitude is log-normally distributed. It was consistent ly found that this is not the case. This is in agreement with a previous discussion for data for the same object but in a different observational period. Simultaneously, the spectral slope of the light curves is calculated. The implications of these findings for models which discuss both the location and the source of IntraDay Variability are presented.
We present results of a periodicity search of 20 intra-day variable optical light curves of the blazar S5 0716+714, selected from a database of 102 light curves spanning over three years. We use a wavelet analysis technique along with a randomization test and find strong candidates for nearly periodic variations in eight light curves, with probabilities ranging from 95% to >99%. This is the first good evidence for periodic, or more-precisely, quasi-periodic, components in the optical intra-day variable light curves of any blazar. Such periodic flux changes support the idea that some active galactic nuclei variability, even in blazars, is based on accretion disk fluctuations or oscillations. These intra-day variability time scales are used to estimate that the central black hole of the blazar S5 0716+714 has a mass > 2.5 times 10^6$ M$_{odot}$. As we did not find any correlations between the flux levels and intra-day variability time scales, it appears that more than one emission mechanism is at work in this blazar.
BL Lac objects of the intermediate subclass (IBLs) are known to emit a substantial fraction of their power in the energy range 0.1--10 GeV. Detecting gamma-ray emission from such sources provides therefore a direct probe of the emission mechanisms an d of the underlying powerhouse. The AGILE gamma-ray satellite detected the remarkable IBL S5 0716+714 (z simeq 0.3) during a high state in the period from 2007 September - October, marked by two very intense flares reaching peak fluxes of 200times10^{-8} ph / cm^2 s above 100 MeV, with simultaneous optical and X-ray observations. We present here a theoretical model for the two major flares and discuss the overall energetics of the source. We conclude that 0716+714 is among the brightest BL Lacs ever detected at gamma-ray energies. Because of its high power and lack of signs for ongoing accretion or surrounding gas, the source is an ideal candidate to test the maximal power extractable from a rotating supermassive black hole via the pure Blandford-Znajek (BZ) mechanism. We find that during the 2007 gamma-ray flares our source approached or just exceeded the upper limit set by BZ for a black hole of mass 10^9 M_sun
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا