ﻻ يوجد ملخص باللغة العربية
We selected a sample of 24 XMM-Newton light curves (LCs) of four high energy peaked blazars, PKS 0548-322, ON 231, 1ES 1426+428 and PKS 2155-304. These data comprise continuous light curves of 7.67h to 18.97h in length. We searched for possible quasi-periodic oscillations (QPO) and intra-day variability (IDV) timescales in the LCs of these blazars. We found a likely QPO in one LC of PKS 2155-304 which was reported elsewhere (Lachowicz et al. 2009). In the remaining 23 LCs we found hints of possible weak QPOs in one LC of each of ON 231 and PKS 2155-304, but neither is statistically significant. We found IDV timescales that ranged from 15.7 ks to 46.8 ks in 8 LCs. In 13 LCs any variability timescales were longer than the length of the data. Assuming the possible weak QPO periods in the blazars PKS 2155-304 and ON 231 are real and are associated with the innermost portions of their accretion disk, we can estimate that their central black hole masses exceed 1.2 $times$ 10$^{7}$ M$_{odot}$. Emission models for radio-loud active galactic nuclei (AGN) that could explain our results are briefly discussed.
We selected a sample of a dozen blazars which are the prime candidates for simultaneous multi-wavelength observing campaigns in their outburst phase. We searched for optical outbursts, intra-day variability and short term variability in these blazars
We have carried out optical (R band) intraday variability (IDV) monitoring of a sample of ten bright low energy peaked blazars (LBLs). Forty photometric observations, of an average of ~ 4 hours each, were made between 2008 September and 2009 June usi
We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504, and BL Lacertae) on December 18--21, 2015 by using the radio telescope in Effelsberg (Germany) a
Two dozens of radio loud active galactic nuclei (AGNs) have been observed with Urumqi 25 m radio telescope in order to search for intra-day variability (IDV). The target sources are blazars (namely flat spectrum radio quasars and BL Lac objects) whic
We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were