ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute the modifications to the attractor mechanism due to fermionic corrections. In N=2, D=4 supergravity, at the fourth order, we find a new contribution to the horizon values of the scalar fields of the vector multiplets.
We determine the two-centered generic charge orbits of magical N = 2 and maximal N = 8 supergravity theories in four dimensions. These orbits are classified by seven U-duality invariant polynomials, which group together into four invariants under the horizontal symmetry group SL(2,R). These latter are expected to disentangle different physical properties of the two-centered black-hole system. The invariant with the lowest degree in charges is the symplectic product (Q1,Q2), known to control the mutual non-locality of the two centers.
We report on recent results in the study of extremal black hole attractors in N=2, d=4 ungauged Maxwell-Einstein supergravities. For homogeneous symmetric scalar manifolds, the three general classes of attractor solutions with non-vanishing Bekenstei n-Hawking entropy are discussed. They correspond to three (inequivalent) classes of orbits of the charge vector, which sits in the relevant symplectic representation R_{V} of the U-duality group. Other than the 1/2-BPS one, there are two other distinct non-BPS classes of charge orbits, one of which has vanishing central charge. The complete classification of the U-duality orbits, as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon), is also reviewed. Finally, we consider the analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attractors yield a related moduli space.
These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formulae for the cri tical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.
We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superpos ition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.
The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z=0, are obtained for the so-called stu model, the minimal rank-3 N=2 symmetric supergravity in d=4 sp ace-time dimensions. Comparisons with previous results, as well as the fake supergravity (first order) formalism and an analysis of the BPS bound all along the non-BPS attractor flows and of the marginal stability of corresponding D-brane configurations, are given.
We consider extremal black hole attractors (both BPS and non-BPS) for N=3 and N=5 supergravity in d=4 space-time dimensions. Attractors for matter-coupled N=3 theory are similar to attractors in N=2 supergravity minimally coupled to Abelian vector mu ltiplets. On the other hand, N=5 attractors are similar to attractors in N=4 pure supergravity, and in such theories only 1N-BPS non-degenerate solutions exist. All the above mentioned theories have a simple interpretation in the first order (fake supergravity) formalism. Furthermore, such theories do not have a d=5 uplift. Finally we comment on the duality relations among the attractor solutions of Ngeq2 supergravities sharing the same full bosonic sector.
59 - S. Ferrara , A. Marrani 2008
We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of s olutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.
We review recent results in the study of attractor horizon geometries (with non-vanishing Bekenstein-Hawking entropy) of dyonic extremal d=4 black holes in supergravity. We focus on N=2, d=4 ungauged supergravity coupled to a number n_{V} of Abelian vector multiplets, outlining the fundamentals of the special Kaehler geometry of the vector multiplets scalar manifold (of complex dimension n_{V}), and studying the 1/2-BPS attractors, as well as the non-BPS (non-supersymmetric) ones with non-vanishing central charge. For symmetric special Kaehler geometries, we present the complete classification of the orbits in the symplectic representation of the classical U-duality group (spanned by the black hole charge configuration supporting the attractors), as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon). Finally, we report on an analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attractors yield a related moduli space.
We generalize the description of the d=4 Attractor Mechanism based on an effective black hole (BH) potential to the presence of a gauging which does not modify the derivatives of the scalars and does not involve hypermultiplets. The obtained results do not rely necessarily on supersymmetry, and they can be extended to d>4, as well. Thence, we work out the example of the stu model of N=2 supergravity in the presence of Fayet-Iliopoulos terms, for the supergravity analogues of the magnetic and D0-D6 BH charge configurations, and in three different symplectic frames: the SO(1,1)^{2}, SO(2,2) covariant and SO(8)-truncated ones. The attractive nature of the critical points, related to the semi-positive definiteness of the Hessian matrix, is also studied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا