ترغب بنشر مسار تعليمي؟ اضغط هنا

SAM Lectures on Extremal Black Holes in d=4 Extended Supergravity

118   0   0.0 ( 0 )
 نشر من قبل Alessio Marrani
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on recent results in the study of extremal black hole attractors in N=2, d=4 ungauged Maxwell-Einstein supergravities. For homogeneous symmetric scalar manifolds, the three general classes of attractor solutions with non-vanishing Bekenstein-Hawking entropy are discussed. They correspond to three (inequivalent) classes of orbits of the charge vector, which sits in the relevant symplectic representation R_{V} of the U-duality group. Other than the 1/2-BPS one, there are two other distinct non-BPS classes of charge orbits, one of which has vanishing central charge. The complete classification of the U-duality orbits, as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon), is also reviewed. Finally, we consider the analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attractors yield a related moduli space.



قيم البحث

اقرأ أيضاً

104 - M. Cvetic , C.N. Pope , A. Saha 2020
The extremal Reissner-Nordstrom black hole admits a conformal inversion symmetry, in which the metric is mapped into itself under an inversion of the radial coordinate combined with a conformal rescaling. In the rotating generalisation, Couch and Tor rence showed that the Kerr-Newman metric no longer exhibits a conformal inversion symmetry, but the radial equation arising in the separation of the massless Klein-Gordon equation admits a mode-dependent inversion symmetry, where the radius of inversion depends upon the energy and azimuthal angular momentum of the mode. It was more recently shown that the static 4-charge extremal black holes of STU supergravity admit a generalisation of the conformal inversion symmetry, in which the conformally-inverted metric is a member of the same 4-charge black hole family but with transformed charges. In this paper we study further generalisations of these inversion symmetries, within the general class of extremal STU supergravity black holes. For the rotating black holes, where again the massless Klein-Gordon equation is separable, we show that examples with four electric charges exhibit a generalisation of the Couch-Torrence symmetry of the radial equation. Now, as in the conformal inversion of the static specialisations, the inversion of the radial equation maps it to the radial equation for a rotating black hole with transformed electric charges. We also study the inversion transformations for the general case of extremal BPS STU black holes carrying eight charges (4 electric plus 4 magnetic), and argue that analogous generalisations of the inversion symmetries exist both for the static and the rotating cases.
These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formulae for the cri tical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.
79 - M. Cvetic , C. N. Pope , A. Saha 2021
We present a construction of the most general BPS black holes of STU supergravity (${cal N}=2$ supersymmetric $D=4$ supergravity coupled to three vector super-multiplets) with arbitrary asymptotic values of the scalar fields. These solutions are obta ined by acting with a subset of of the global symmetry generators on STU BPS black holes with zero values of the asymptotic scalars, both in the U-duality and the heterotic frame. The solutions are parameterized by fourteen parameters: four electric and four magnetic charges, and the asymptotic values of the six scalar fields. We also present BPS black hole solutions of a consistently truncated STU supergravity, which are parameterized by two electric and two magnetic charges and two scalar fields. These latter solutions are significantly simplified, and are very suitable for further explicit studies. We also explore a conformal inversion symmetry of the Couch-Torrence type, which maps any member of the fourteen-parameter family of BPS black holes to another member of the family. Furthermore, these solutions are expected to be valuable in the studies of various swampland conjectures in the moduli space of string compactifications.
We derive a $2+1$ dimensional model with unconventional supersymmetry at the boundary of an ${rm AdS}_4$ $mathcal{N}$-extended supergravity, generalizing previous results. The (unconventional) extended supersymmetry of the boundary model is instrumen tal in describing, within a top-down approach, the electronic properties of graphene-like 2D materials at the two Dirac points, ${bf K}$ and ${bf K}$. The two valleys correspond to the two independent sectors of the ${rm OSp}(p|2)times {rm OSp}(q|2)$ boundary model in the $p=q$ case, which are related by a parity transformation. The Semenoff and Haldane-type masses entering the corresponding Dirac equations are identified with the torsion parameters of the substrate in the model.
192 - Shuang-Qing Wu 2007
We present the general exact solutions for non-extremal rotating charged black holes in the Godel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four non-trivial parameters, namely the mass $m$, the charg e $q$, the Kerr equal rotation parameter $a$, and the Godel parameter $j$. We calculate the conserved energy, angular momenta and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. We also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Godel black hole backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا