ﻻ يوجد ملخص باللغة العربية
We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superposition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.
We review recent results in the study of attractor horizon geometries (with non-vanishing Bekenstein-Hawking entropy) of dyonic extremal d=4 black holes in supergravity. We focus on N=2, d=4 ungauged supergravity coupled to a number n_{V} of Abelian
We study the effect of Scherk-Schwarz deformations on intersecting branes. Non-chiral fermions in any representation of the Chan-Paton gauge group generically acquire a tree-level mass dependent on the compactification radius and the brane wrapping n
We compute the modifications to the attractor mechanism due to fermionic corrections. In N=2, D=4 supergravity, at the fourth order, we find a new contribution to the horizon values of the scalar fields of the vector multiplets.
In this PhD thesis, we investigate generic features of inflation which are strictly related to fundamental aspects of UV-physics scenarios, such as string theory or supergravity. After a short introduction to standard and inflationary cosmology, we p
In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic v