ترغب بنشر مسار تعليمي؟ اضغط هنا

We estimate the fraction of AGNs hosted in starburst galaxies (f_bursty) as a function of the AGN luminosity predicted under the assumption that starburst events and AGN activity are triggered by galaxy interactions during their merging histories. Th e latter are described through Monte Carlo realizations, and are connected to star formation and BH accretion using a semi-analytic model of galaxy formation in a cosmological framework. The predicted fraction f_bursty increases steeply with AGN luminosity from <0.2 at L_X < 10^44 erg/s to >0.9 at L_X > 10^45 erg/s over a wide redshift interval from z=0 to z=6. We compare the model predictions with new measurements of f_bursty from a sample of X-ray selected AGNs in the XMM-COSMOS field at 0.3< z< 2, and from a sample of QSOs (L_X > 10^45 erg/s) in the redshift range 2< z< 6.5. We find preliminary indications that under conservative assumptions half of the QSO hosts are starburst galaxies. This result provide motivation for future systematic studies of the stellar properties of high luminosity AGN hosts in order to constrain AGN triggering mechanisms.
An increasing amount of observational evidence supports the notion that there are two modes of star formation: a quiescent mode in disk-like galaxies, and a starburst mode, which is generally interpreted as driven by merging. Using a semi-analytic mo del of galaxy formation, we derive the relative contribution to the cosmic star formation rate density of quiescently starforming and starburst galaxies, predicted under the assumption that starburst events are triggered by galaxy encounters (merging and fly-by kind) during their merging histories. We show that, within this framework, quiescently starforming galaxies dominate the cosmic star formation rate density at all redshifts. The contribution of the burst-dominated starforming galaxies increases with redshift, rising from <5% at low redshift (z<0.1) to ~20% at z>5. We estimated that the fraction of the final (z=0) galaxy stellar mass which is formed through the burst component of star formation is ~10% for 10^10 M_odot<M_*<10^11.5 M_odot. Starburst galaxies, selected according to their distance from the galaxy main sequence, account for ~10% of the star formation rate density in the redshift interval 1.5<z<2.5, i.e. at the cosmic peak of the star formation activity.
We compute the number density of massive Black Holes (BHs) at the centre of galaxies at z=6 in different Dynamical Dark Energy (DDE) cosmologies, and compare it with existing observational lower limits, to derive constraints on the evolution of the D ark Energy equation of state parameter w. Our approach only assumes the canonical scenario for structure formation from the collapse of overdense regions of the Dark Matter dominated primordial density field on progressively larger scales; the Black Hole accretion and merging rate have been maximized in the computation so as to obtain robust constraints on w and on its look-back time derivative w_a. Our results provide independent constraints complementary to those obtained by combining Supernovae, Cosmic Microwave Background and Baryonic Acoustic Oscillations; while the latter concern combinations of w_0 and w_a leaving the time evolution of the state parameter w_a highly unconstrained, the BH abundance mainly provide upper limits on w_a, only weakly depending on w_0. Combined with the existing constraints, our results significantly restrict the allowed region in DDE parameter space, ruling out DDE models not providing cosmic time and fast growth factor large enough to allow for the building up of the observed abundance of BHs; in particular, models with -1.2 leq w_0 leq -1 and positive redshift evolution w_a > 0.8 - completely consistent with previous constraints - are strongly disfavoured by our independent constraints from BH abundance. Such range of parameters corresponds to Quintom DDE models, with w crossing -1 starting from larger values.
We derive the growth of SMBHs relative to the stellar content of their host galaxy predicted under the assumption of BH accretion triggered by galaxy encounters occurring during their merging histories. We show that, within this framework, the ratio Gamma=(M_BH/M_*)(z)/(M_BH/M_*)(z=0) between the Black Hole mass and the galactic stellar mass (normalized to the local value) depends on both BH mass and redshift. While the average value and the spread of Gamma(z) increase with z, such an effect is larger for massive BHs, reaching values Gamma=5 for massive Black Holes (M>10^9 M_{odot}) at z>4, in agreement with recent observations of high-redshift QSOs; this is due to the effectiveness of interactions in triggering BH accretion in high-density environments at high redshifts. To test such a model against observations, we worked out specific predictions for sub-samples of the simulated galaxies corresponding to the different observational samples for which measurements of Gamma have been obtained. We found that for Broad Line AGNs at 1<z<2 values of Gamma=2 are expected, with a mild trend toward larger value for increasing BH mass. Instead, when we select from our Monte Carlo simulations only extremely gas rich, rapidly star forming galaxies at 2<z<3, we find low values 0.3<Gamma<1.5, consistent with recent observational findings on samples of sub-mm galaxies; in the framework of our model, these objects end up at z=0 in low-to-intermediate mass BHs (M<10^9 M_{odot}), and they do not represent typical paths leading to local massive galaxies. The latter have formed preferentially through paths passing above the local M_*-M_BH relation. We discuss how the global picture emerging from the model is consistent with a downsizing scenario, where massive BHs accrete a larger fraction of their final mass at high redshifts z>4.
There have been recent claims that a significant fraction of type 2 AGN accrete close or even above the Eddington limit. In type 2 AGN the bolometric luminosity (L_b) is generally inferred from the [OIII] emission line luminosity (L_OIII). The key is sue, in order to estimate the bolometric luminosity in these AGN, is therefore to know the bolometric correction to be applied to L_OIII. A complication arises from the fact that the observed L_OIII is affected by extinction, likely due to dust within the narrow line region. The extinction-corrected [OIII] luminosity (L^c_OIII) is a better estimator of the nuclear luminosity than L_OIII. However, so far only the bolometric correction to be applied to the uncorrected L_OIII has been evaluated. This paper is devoted to estimate the bolometric correction C_OIII=L_b/L^c_OIII in order to derive the Eddington ratios for the type 2 AGN in a sample of SDSS objects. We have collected from the literature 61 sources with reliable estimate of both L^c_OIII and X-ray luminosities (L_X). To estimate C_OIII, we combined the observed correlation between L^c_OIII and L_X with the X-ray bolometric correction. We found, contrary to previous studies, a linear correlation between L^c_OIII and L_X. We estimated C_OIII using the luminosity-dependent X-ray bolometric correction of Marconi et al. (2004), and we found a mean value of C_OIII in the luminosity ranges log L_OIII=38-40, 40-42, and 42-44 of 87, 142 and 454 respectively. We used it to calculate the Eddington ratio distribution of type 2 SDSS AGN at 0.3<z<0.4 and we found that these sources are not accreting near their Eddington limit, contrary to previous claims.
The evidence of a decrease with increasing luminosity of the fraction f_{abs} of absorbed and Compton-thin among X-ray (2-10 keV) selected AGN is observationally rather well supported, while that of an increase of f_{abs} with redshift is rather cont roversial. In Lamastra, Perola & Matt (2006) the gravitational effect of the SMBH on the molecular interstellar gas, in the central region of the host galaxy, was shown to predict an anti-correlation between f_{abs} and M_{BH}. The most recent findings on the distribution of the Eddington ratio lambda=L_b/L_E as a function of M_{BH} and z are used to convert that relationship into one between f_{abs} and both bolometric (L_b) and X-ray (L_X) luminosities at various values of z. The findings on lambda(M_{BH},z) are properly treated in order to ensure completeness in the prediction of f_{abs} above a certain luminosity, at values of z=0.1, 0.35, 0.7 and >1. To verify the consequence of these findings alone, we adopted in a first istance a distribution of gas surface density Sigma, observed in a sample of local spiral galaxies, irrespective of the galaxy morphological type and z. Assuming in the lambda(M_{BH},z) distribution the Eddington limit, lambda=1, as a ``natural cut-off, the predictions are consistent with the existence of an anti-correlation between f_{abs} and L_X, but fail to reproduce an increase of f_{abs} with z. Because the early type galaxies on average are much poorer in molecular gas than late type ones, a quantitative agreement with the local value of f_{abs} requires the existence of a correlation between Sigma and the central activity. An increase of typical values of Sigma with z, correlated with the activity, might explain an increase of f_{abs} with z. However, at the highest luminosities f_{abs} could hardly exceed about 0.3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا