ترغب بنشر مسار تعليمي؟ اضغط هنا

The Building Up of the Black Hole Mass - Stellar Mass Relation

114   0   0.0 ( 0 )
 نشر من قبل Alessandra Lamastra
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the growth of SMBHs relative to the stellar content of their host galaxy predicted under the assumption of BH accretion triggered by galaxy encounters occurring during their merging histories. We show that, within this framework, the ratio Gamma=(M_BH/M_*)(z)/(M_BH/M_*)(z=0) between the Black Hole mass and the galactic stellar mass (normalized to the local value) depends on both BH mass and redshift. While the average value and the spread of Gamma(z) increase with z, such an effect is larger for massive BHs, reaching values Gamma=5 for massive Black Holes (M>10^9 M_{odot}) at z>4, in agreement with recent observations of high-redshift QSOs; this is due to the effectiveness of interactions in triggering BH accretion in high-density environments at high redshifts. To test such a model against observations, we worked out specific predictions for sub-samples of the simulated galaxies corresponding to the different observational samples for which measurements of Gamma have been obtained. We found that for Broad Line AGNs at 1<z<2 values of Gamma=2 are expected, with a mild trend toward larger value for increasing BH mass. Instead, when we select from our Monte Carlo simulations only extremely gas rich, rapidly star forming galaxies at 2<z<3, we find low values 0.3<Gamma<1.5, consistent with recent observational findings on samples of sub-mm galaxies; in the framework of our model, these objects end up at z=0 in low-to-intermediate mass BHs (M<10^9 M_{odot}), and they do not represent typical paths leading to local massive galaxies. The latter have formed preferentially through paths passing above the local M_*-M_BH relation. We discuss how the global picture emerging from the model is consistent with a downsizing scenario, where massive BHs accrete a larger fraction of their final mass at high redshifts z>4.

قيم البحث

اقرأ أيضاً

We explore the effect of varying the mass of the seed black hole on the resulting black hole mass - bulge mass relation at z ~ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our mo del by requiring the observed properties of galaxies at z ~ 0 are reproduced. In keeping with previous semi-analytic models, we place a seed black hole immediately after a galaxy forms. When the mass of the seed is set at 10^5 M_sun, we find that the model results become inconsistent with recent observational results of the black hole mass - bulge mass relation for dwarf galaxies. In particular, the model predicts that bulges with ~ 10^9 M_sun harbour larger black holes than observed. On the other hand, when we employ seed black holes with 10^3 M_sun, or randomly select their mass within a 10^(3-5) M_sun range, the resulting relation is consistent with observation estimates, including the observed dispersion. We find that to obtain stronger constraints on the mass of seed black holes, observations of less massive bulges at z ~ 0 are a more powerful comparison than the relations at higher redshifts.
We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its central black hole, but typically assume spatially uniform Y. We have modeled three giant elliptical galaxies with gradients alpha = d(log Y)/d(log r) from -0.2 to +0.1. Color and line strength gradients suggest mildly negative alpha in these galaxies. Introducing a negative (positive) gradient in Y increases (decreases) the enclosed stellar mass near the center of the galaxy and leads to systematically smaller (larger) MBH measurements. For models with alpha = -0.2, the best-fit values of MBH are 28%, 27%, and 17% lower than the constant-Y case, in NGC 3842, NGC 6086, and NGC 7768, respectively. For alpha = +0.1, MBH are 14%, 22%, and 17% higher than the constant-Y case for the three respective galaxies. For NGC 3842 and NGC 6086, this bias is comparable to the statistical errors from individual modeling trials. At larger radii, negative (positive) gradients in Y cause the total stellar mass to decrease (increase) and the dark matter fraction within one effective radius to increase (decrease).
If the dark matter is made of ultra-light axions, stable solitonic cores form at the centers of virialized halos. In some range for the mass $m$ of the axion particle, these cores are sufficiently compact and can mimic supermassive black holes (SMBH) residing at galactic nuclei. We use the solitonic core--halo mass relation, validated in numerical simulations, to constrain a new range of allowed axion mass from measurements of the SMBH mass in (pseudo)bulge and bulgeless galaxies. These limits are based on observations of galactic nuclei on scales smaller than 10 pc. Our analysis suggests that $m < 10^{-18}$ eV is ruled out by the data. We briefly discuss whether an attractive self-interaction among axions could alleviate this constraint.
We model the dynamical structure of M87 (NGC4486) using high spatial resolution long-slit observations of stellar light in the central regions, two-dimensional stellar light kinematics out to half of the effective radius, and globular cluster velocit ies out to 8 effective radii. We simultaneously fit for four parameters, black hole mass, dark halo core radius, dark halo circular velocity, and stellar mass-to-light ratio. We find a black hole mass of 6.4(+-0.5)x10^9 Msun(the uncertainty is 68% confidence marginalized over the other parameters). The stellar M/L_V=6.3+-0.8. The best-fitted dark halo core radius is 14+-2 kpc, assuming a cored logarithmic potential. The best-fitted dark halo circular velocity is 715+-15 km/s. Our black hole mass is over a factor of 2 larger than previous stellar dynamical measures, and our derived stellar M/L ratio is 2 times lower than previous dynamical measures. When we do not include a dark halo, we measure a black hole mass and stellar M/L ratio that is consistent with previous measures, implying that the major difference is in the model assumptions. The stellar M/L ratio from our models is very similar to that derived from stellar population models of M87. The reason for the difference in the black hole mass is because we allow the M/L ratio to change with radius. The dark halo is degenerate with the stellar M/L ratio, which is subsequently degenerate with the black hole mass. We argue that dynamical models of galaxies that do not include the contribution from a dark halo may produce a biased result for the black hole mass. This bias is especially large for a galaxy with a shallow light profile such as M87, and may not be as severe in galaxies with steeper light profiles unless they have a large stellar population change with radius.
160 - Fabio Fontanot 2015
Recent inspections of local available data suggest that the almost linear relation between the stellar mass of spheroids ($M_{rm sph}$) and the mass of the super massive Black Holes (BHs) residing at their centres, shows a break below $M_{rm sph} sim 10^{10} {rm M}_odot$, with a steeper, about quadratic relation at smaller masses. We investigate the physical mechanisms responsible for the change in slope of this relation, by comparing data with the results of the semi-analytic model of galaxy formation MORGANA, which already predicted such a break in its original formulation. We find that the change of slope is mostly induced by effective stellar feedback in star-forming bulges. The shape of the relation is instead quite insensitive to other physical mechanisms connected to BH accretion such as disc instabilities, galaxy mergers, Active Galactic Nucleus (AGN) feedback, or even the exact modelling of accretion onto the BH, direct or through a reservoir of low angular momentum gas. Our results support a scenario where most stars form in the disc component of galaxies and are carried to bulges through mergers and disc instabilities, while accretion onto BHs is connected to star formation in the spheroidal component. Therefore, a model of stellar feedback that produces stronger outflows in star-forming bulges than in discs will naturally produce a break in the scaling relation. Our results point to a form of co-evolution especially at lower masses, below the putative break, mainly driven by stellar feedback rather than AGN feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا