ترغب بنشر مسار تعليمي؟ اضغط هنا

We study many-body localised quantum systems subject to periodic driving. We find that the presence of a mobility edge anywhere in the spectrum is enough to lead to delocalisation for any driving strength and frequency. By contrast, for a fully local ised many-body system, a delocalisation transition occurs at a finite driving frequency. We present numerical studies on a system of interacting one-dimensional bosons and the quantum random energy model, as well as simple physical pictures accounting for those results.
When a closed quantum system is driven periodically with period $T$, it approaches a periodic state synchronized with the drive in which any local observable measured stroboscopically approaches a steady value. For integrable systems, the resulting b ehaviour is captured by a periodic version of a generalized Gibbs ensemble. By contrast, here we show that for generic non-integrable interacting systems, local observables become independent of the initial state entirely. Essentially, this happens because Floquet eigenstates of the driven system at quasienergy $omega_alpha$ consist of a mixture of the exponentially many eigenstates of the undriven Hamiltonian which are thus drawn from the entire extensive undriven spectrum. This is a form of equilibration which depends only on the Hilbert space of the undriven system and not on any details of its Hamiltonian.
The nature of the behaviour of an isolated many-body quantum system periodically driven in time has been an open question since the beginning of quantum mechanics. After an initial transient, such a system is known to synchronize with the driving; in contrast to the non-driven case, no fundamental principle has been proposed for constructing the resulting non-equilibrium state. Here, we analytically show that, for a class of integrable systems, the relevant ensemble is constructed by maximizing an appropriately defined entropy subject to constraints, which we explicitly identify. This result constitutes a generalisation of the concepts of equilibrium statistical mechanics to a class of far-from-equilibrium-systems, up to now mainly accessible using ad-hoc methods.
We study the quantum Goos-H{a}nchen(GH) effect for wave-packet dynamics at a normal/superconductor (NS) interface. We find that the effect is amplified by a factor $(E_F/Delta)$, with $E_F$ the Fermi energy and $Delta$ the gap. Interestingly, the GH effect appears only as a time delay $delta t$ without any lateral shift, and the corresponding delay length is about $(E_F/Delta)lambda_F$, with $lambda_F$ the Fermi wavelength. This makes the NS interface sticky when $Delta ll E_F$, since typically GH effects are of wavelength order. This sticky behavior can be further enhanced by a resonance mode in NSNS interface. Finally, for a large $Delta$, the resonance-mode effect makes a transition from Andreev to the specular electron reflection as the width of the sandwiched superconductor is reduced.
We provide an account of the static and dynamic properties of hard-core bosons in a one-dimensional lattice subject to a multi-chromatic quasiperiodic potential for which the single-particle spectrum has mobility edges. We use the mapping from strong ly interacting bosons to weakly interacting fermions, and provide exact numerical results for hard-core bosons in and out of equilibrium. In equilibrium, we find that the system behaves like a quasi-condensate (insulator) depending on whether the Fermi surface of the corresponding fermionic system lies in a spectral region where the single-particle states are delocalized (localized). We also study non-equilibrium expansion dynamics of initially trapped bosons, and demonstrate that the extent of partial localization is determined by the single-particle spectrum.
128 - T. Duric , A. Lazarides 2012
We study incompressible ground states of bosons in a two-dimensional rotating square optical lattice. The system can be described by the Bose-Hubbard model in an effective uniform magnetic field present due to the lattice rotation. To study ground st ates of the system, we map it to a frustrated spin model, followed by Schwinger boson mean field theory and projective symmetry group analysis. Using symmetry analysis we identify bosonic fractional quantum Hall states, predicted for bosonic atoms in rotating optical lattices, with possible stable gapped spin liquid states within the Schwinger boson formalism. In particular, we find that previously found fractional quantum Hall states induced by the lattice potential, and with no counterpart in the continuum [G. Moller, and N. R. Cooper, Phys. Rev. Lett. textbf{103}, 105303 (2009)], correspond to $pi$ flux spin liquid states of the frustrated spin model.
We analyze interacting one-dimensional bosons in the continuum, subject to a periodic sinusoidal potential of arbitrary depth. Variation of the lattice depth tunes the system from the Bose-Hubbard limit for deep lattices, through the sine-Gordon regi me of weak lattices, to the complete absence of a lattice. Using the Bose-Fermi mapping between strongly interacting bosons and weakly interacting fermions, we derive the phase diagram in the parameter space of lattice depth and chemical potential. This extends previous knowledge from tight-binding (Bose-Hubbard) studies in a new direction which is important because the lattice depth is a readily adjustable experimental parameter. Several other results (equations of state, energy gaps, profiles in harmonic trap) are presented as corollaries to the physics contained in this phase diagram. Generically, both incompressible (gapped) and compressible phases coexist in a trap; this has implications for experimental measurements.
We study superconductivity in an ultracold Bose-Fermi mixture loaded into a square optical lattice subjected to a staggered flux. While the bosons form a superfluid at very low temperature and weak interaction, the interacting fermions experience an additional long-ranged attractive interaction mediated by phonons in the bosonic superfluid. This leads us to consider a generalized Hubbard model with on-site and nearest-neighbor attractive interactions, which give rise to two competing superconducting channels. We use the Bardeen-Cooper-Schrieffer theory to determine the regimes where distinct superconducting ground states are stabilized, and find that the non-local pairing channel favors a superconducting ground state which breaks both the gauge and the lattice symmetries, thus realizing unconventional superconductivity. Furthermore, the particular structure of the single-particle spectrum leads to unexpected consequences, for example, a dome-shaped superconducting region in the temperature versus filing fraction phase diagram, with a normal phase that comprises much richer physics than a Fermi-liquid. Notably, the relevant temperature regime and coupling strength is readily accessible in state of the art experiments with ultracold trapped atoms.
Recent progress in the field of ultracold gases has allowed the creation of phase-segregated Bose-Fermi systems. We present a theoretical study of their collective excitations at zero temperature. As the fraction of fermion to boson particle number i ncreases, the collective mode frequencies take values between those for a fully bosonic and those for a fully fermionic cloud, with damping in the intermediate region. This damping is caused by fermions which are resonantly driven at the interface.
We present a theoretical study of the collective excitations of a trapped imbalanced fermion gas at unitarity, when the system consists of a superfluid core and a normal outer shell. We formulate the relevant boundary conditions and treat the normal shell both hydrodynamically and collisionlessly. For an isotropic trap, we calculate the mode frequencies as a function of trap polarization. Out-of-phase modes with frequencies below the trapping frequency are obtained for the case of a hydrodynamic normal shell. For the collisionless case, we calculate the monopole mode frequencies, and find that all but the lowest mode may be damped.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا