ﻻ يوجد ملخص باللغة العربية
We present a theoretical study of the collective excitations of a trapped imbalanced fermion gas at unitarity, when the system consists of a superfluid core and a normal outer shell. We formulate the relevant boundary conditions and treat the normal shell both hydrodynamically and collisionlessly. For an isotropic trap, we calculate the mode frequencies as a function of trap polarization. Out-of-phase modes with frequencies below the trapping frequency are obtained for the case of a hydrodynamic normal shell. For the collisionless case, we calculate the monopole mode frequencies, and find that all but the lowest mode may be damped.
We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integ
We calculate the excitation modes of a 1D dipolar quantum gas confined in a harmonic trap with frequency $omega_0$ and predict how the frequency of the breathing n=2 mode characterizes the interaction strength evolving from the Tonks-Girardeau value
Recent experiments on imbalanced fermion gases have proved the existence of a sharp interface between a superfluid and a normal phase. We show that, at the lowest experimental temperatures, a temperature difference between N and SF phase can appear a
Due to Pauli blocking of intermediate states, the scattering matrix (or $T$ matrix) of two fermionic atoms in a Fermi gas becomes different from that of two atoms in free space. This effect becomes particularly important near a Feshbach resonance, wh
A hydrodynamic description is used to study the zero-temperature properties of a trapped spinor Bose-Einstein condensate in the presence of a uniform magnetic field. We show that, in the case of antiferromagnetic spin-spin interaction, the polar and