ﻻ يوجد ملخص باللغة العربية
We analyze interacting one-dimensional bosons in the continuum, subject to a periodic sinusoidal potential of arbitrary depth. Variation of the lattice depth tunes the system from the Bose-Hubbard limit for deep lattices, through the sine-Gordon regime of weak lattices, to the complete absence of a lattice. Using the Bose-Fermi mapping between strongly interacting bosons and weakly interacting fermions, we derive the phase diagram in the parameter space of lattice depth and chemical potential. This extends previous knowledge from tight-binding (Bose-Hubbard) studies in a new direction which is important because the lattice depth is a readily adjustable experimental parameter. Several other results (equations of state, energy gaps, profiles in harmonic trap) are presented as corollaries to the physics contained in this phase diagram. Generically, both incompressible (gapped) and compressible phases coexist in a trap; this has implications for experimental measurements.
We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice, after the ground-state is excited by a single spontaneous emission event, i.e. after an absorption and re-emission of a lattice photon. This is an important fundamenta
We study the gap solitons and nonlinear Bloch waves of interacting bosons in one-dimensional optical lattices, taking into account the interaction from the weak to the strong limits. It is shown that composition relation between the gap solitons and
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic s
We investigate magnetic properties of strongly interacting bosonic mixtures confined in one dimensional geometries, focusing on recently realized Rb-K gases with tunable interspecies interactions. By combining analytical perturbation theory results w
We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)],