ترغب بنشر مسار تعليمي؟ اضغط هنا

170 - A. P. Young 2017
We study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e. the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodyna mic limit. We find that the replica symmetric (RS) solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at $T = 0$. If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e. magnetic field).
We study the $pm J$ transverse-field Ising spin glass model at zero temperature on d-dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong field limit. In the SK model and in high-dimens ions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension $d = 6$ which is below the upper critical dimension of $d=8$. In contrast, in lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power-moments of the local susceptibility become singular in the paramagnetic phase $textit{before}$ the critical point. Griffiths-McCoy singularities are very strong in two-dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.
We study spin glass behavior in a random Ising Coulomb antiferromagnet in two and three dimensions using Monte Carlo simulations. In two dimensions, we find a transition at zero temperature with critical exponents consistent with those of the Edwards Anderson model, though with large uncertainties. In three dimensions, evidence for a finite-temperature transition, as occurs in the Edwards-Anderson model, is rather weak. This may indicate that the sizes are too small to probe the asymptotic critical behavior, or possibly that the universality class is different from that of the Edwards-Anderson model and has a lower critical dimension equal to three.
We present a unified view of finite-size scaling (FSS) in dimension d above the upper critical dimension, for both free and periodic boundary conditions. We find that the modified FSS proposed some time ago to allow for violation of hyperscaling due to a dangerous irrelevant variable, applies only to k=0 fluctuations, and so there is only a single exponent eta describing power-law decay of correlations at criticality, in contrast to recent claims. With free boundary conditions the finite-size shift is greater than the rounding. Nonetheless, using T-T_L, where T_L is the finite-size pseudocritical temperature, rather than T-T_c, as the scaling variable, the data does collapse on to a scaling form which includes the behavior both at T_L, where the susceptibility chi diverges like L^{d/2} and at the bulk T_c where it diverges like L^2. These claims are supported by large-scale simulations on the 5-dimensional Ising model.
58 - Peter Young 2012
These notes discuss, in a style intended for physicists, how to average data and fit it to some functional form. I try to make clear what is being calculated, what assumptions are being made, and to give a derivation of results rather than just quote them. The aim is put a lot useful pedagogical material together in a convenient place. This manuscript is a substantial enlargement of lecture notes I prepared for the Bad Honnef School on Efficient Algorithms in Computational Physics, September 10-14, 2012.
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying t he power sigma is analogous to varying the space dimension d in a short-range model. For sigma=0.6, which is in the mean field regime regime, we find clear evidence for an AT line. For sigma = 0.85, which is in the non-mean-field regime and corresponds to a space dimension of close to 3, we find no AT line, though we cannot rule one out for very small fields. Finally for sigma=0.75, which is in the non-mean-field regime but closer to the mean-field boundary, the evidence suggests that there is an AT line, though the possibility that even larger sizes are needed to see the asymptotic behavior can not be ruled out.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
We determine the complexity of several constraint satisfaction problems using the heuristic algorithm, WalkSAT. At large sizes N, the complexity increases exponentially with N in all cases. Perhaps surprisingly, out of all the models studied, the har dest for WalkSAT is the one for which there is a polynomial time algorithm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا