Notes on the replica symmetric solution of the classical and quantum SK model, including the matrix of second derivatives and the spin glass susceptibility
We study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e. the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodyna
mic limit. We find that the replica symmetric (RS) solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at $T = 0$. If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e. magnetic field).
The interplay between quantum fluctuations and disorder is investigated in a spin-glass model, in the presence of a uniform transverse field $Gamma$, and a longitudinal random field following a Gaussian distribution with width $Delta$. The model is s
tudied through the replica formalism. This study is motivated by experimental investigations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, where the application of a transverse magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic susceptibility $chi_3$, which have led to a considerable experimental and theoretical debate. We analyzed two situations, namely, $Delta$ and $Gamma$ considered as independent, as well as these two quantities related as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature $T_f$; moreover, $T_f$ decreases by increasing $Gamma$ towards a quantum critical point at zero temperature. The situation where $Delta$ and $Gamma$ are related appears to reproduce better the experimental observations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, with the theoretical results coinciding qualitatively with measurements of the nonlinear susceptibility. In this later case, by increasing $Gamma$, $chi_3$ becomes progressively rounded, presenting a maximum at a temperature $T^*$ ($T^*>T_f$). Moreover, we also show that the random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside the paramagnetic phase, leading to two regimes delimited by the temperature $T^*$, one for $T_f<T<T^*$, and another one for $T>T^*$. It is argued that the conventional paramagnetic state corresponds to $T>T^*$, whereas the temperature region $T_f<T<T^*$ may be characterized by a rather unusual dynamics, possibly including Griffiths singularities.
It has been shown recently that predictions from Mode-Coupling Theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on th
e regime around the dynamical transition in three dimensions, Mode-Coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, Mode-Coupling results, and mean-field results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes --small cage expansion and replicated Hyper-Netted-Chain (RHNC)-- provide the correct qualitative picture for the transition, namely a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.
Magnetic ordering at low temperature for Ising ferromagnets manifests itself within the associated Fortuin-Kasteleyn (FK) random cluster representation as the occurrence of a single positive density percolating network. In this paper we investigate t
he percolation signature for Ising spin glass ordering -- both in short-range (EA) and infinite-range (SK) models -- within a two-replica FK representation and also within the different Chayes-Machta-Redner two-replica graphical representation. Based on numerical studies of the $pm J$ EA model in three dimensions and on rigorous results for the SK model, we conclude that the spin glass transition corresponds to the appearance of {it two} percolating clusters of {it unequal} densities.
We provide a simple extension of Bolthausens Morita type proof cite{Bolt2} of the replica symmetric formula for the Sherrington-Kirkpatrick (SK) model and prove the replica symmetry for all $(beta,h)$ that satisfy $beta^2 E, text{sech}^2(betasqrt{q}Z
+h) leq 1$, where $q = Etanh^2(betasqrt{q}Z+h)$. Compared to cite{Bolt2}, the key of the argument is to apply the conditional second moment method to a suitably reduced partition function.
A. P. Young
.
(2017)
.
"Notes on the replica symmetric solution of the classical and quantum SK model, including the matrix of second derivatives and the spin glass susceptibility"
.
A. Peter Young
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا