ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically study electromagnetically induced transparency (EIT) in reflection spectra of V-type system at the gas-solid interface. In addition to a narrow dip arising from the EIT effect, we find the other particular saturation effect induced b y pump field, which does not exist in $Lambda$ or $Xi$ -type system reflection spectra. The saturation effect only induces an intensity decrement in the reflection spectra, and there is no influence on the narrow dip arising from the EIT effect. We detailedly calculate and analyze the dependence of V-type system reflection spectra on probe field intensity, pump field intensity, coherent decay rate, and the initial population after the collision between atoms and the interface.
We report the creation of a sample of over 1000 ultracold $^{87}$RbCs molecules in the lowest rovibrational ground state, from an atomic mixture of $^{87}$Rb and Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated R aman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be $h c times 3811.576(1)$ cm$^{-1}$ and the $|v=0, J=0>$ to $|v=0, J=2>$ splitting to be $h times 2940.09(6)$ MHz. Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We demonstrate that a space-fixed dipole moment of 0.355(2)(4) D is accessible in RbCs, which is substantially higher than in previous work.
We systematically investigate the dependence of the temperature of cold cesium atoms of polarization gradient cooling (PGC) in optical molasses on experimental parameters, which contain changing modes of cooling laser, PGC interaction time, cooling l aser frequency and its intensity. The SR mode of cooling laser, that means the cooling laser frequency is changed with step mode and cooling laser intensity is changed with ramp mode, is found to be the best for PGC comparing with other SS, RS, and RR modes. We introduce a statistical explanation and an exponential decay function to explain the variation of cold atomic temperature on time. The heating effect is observed when the cooling laser intensity is lower than the saturation intensity of cold atoms. After optimization, the lowest temperature of cold cesium atoms is observed to be about 4uK with the number of 2x10^9, a density of 1x10^11/cm^3 and the phase space density of 4.4x10^(-5). The optimization process and analysis of controllable experimental parameters are also meaningful for other cold atomic systems.
We present a simple, reliable, and no-destructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to collision rate constant between cold atoms and background gas with a coef ficient k, which can be calculated by simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curve of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atom systems and meets the miniaturization requirement of commercial applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا