ترغب بنشر مسار تعليمي؟ اضغط هنا

Multidimensional unfolding methods are widely used for visualizing item response data. Such methods project respondents and items simultaneously onto a low-dimensional Euclidian space, in which respondents and items are represented by ideal points, w ith person-person, item-item, and person-item similarities being captured by the Euclidian distances between the points. In this paper, we study the visualization of multidimensional unfolding from a statistical perspective. We cast multidimensional unfolding into an estimation problem, where the respondent and item ideal points are treated as parameters to be estimated. An estimator is then proposed for the simultaneous estimation of these parameters. Asymptotic theory is provided for the recovery of the ideal points, shedding lights on the validity of model-based visualization. An alternating projected gradient descent algorithm is proposed for the parameter estimation. We provide two illustrative examples, one on users movie rating and the other on senate roll call voting.
With the rapid development of data collection and aggregation technologies in many scientific disciplines, it is becoming increasingly ubiquitous to conduct large-scale or online regression to analyze real-world data and unveil real-world evidence. I n such applications, it is often numerically challenging or sometimes infeasible to store the entire dataset in memory. Consequently, classical batch-based estimation methods that involve the entire dataset are less attractive or no longer applicable. Instead, recursive estimation methods such as stochastic gradient descent that process data points sequentially are more appealing, exhibiting both numerical convenience and memory efficiency. In this paper, for scalable estimation of large or online survival data, we propose a stochastic gradient descent method which recursively updates the estimates in an online manner as data points arrive sequentially in streams. Theoretical results such as asymptotic normality and estimation efficiency are established to justify its validity. Furthermore, to quantify the uncertainty associated with the proposed stochastic gradient descent estimator and facilitate statistical inference, we develop a scalable resampling strategy that specifically caters to the large-scale or online setting. Simulation studies and a real data application are also provided to assess its performance and illustrate its practical utility.
We propose a latent topic model with a Markovian transition for process data, which consist of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem solv ing items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinees latent state. Using topic transition probabilities along with response times enables us to capture examinees learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem solving item in 2012 Programme for International Student Assessment (PISA 2012).
Process data, temporally ordered categorical observations, are of recent interest due to its increasing abundance and the desire to extract useful information. A process is a collection of time-stamped events of different types, recording how an indi vidual behaves in a given time period. The process data are too complex in terms of size and irregularity for the classical psychometric models to be applicable, at least directly, and, consequently, it is desirable to develop new ways for modeling and analysis. We introduce herein a latent theme dictionary model (LTDM) for processes that identifies co-occurrent event patterns and individuals with similar behavioral patterns. Theoretical properties are established under certain regularity conditions for the likelihood based estimation and inference. A non-parametric Bayes LTDM algorithm using the Markov Chain Monte Carlo method is proposed for computation. Simulation studies show that the proposed approach performs well in a range of situations. The proposed method is applied to an item in the 2012 Programme for International Student Assessment with interpretable findings.
A framework is presented to model instances and degrees of local item dependence within the context of diagnostic classification models (DCMs). The study considers an undirected graphical model to describe dependent structure of test items and draws inference based on pseudo-likelihood. The new modeling framework explicitly addresses item interactions beyond those explained by latent classes and thus is more flexible and robust against the violation of local independence. It also facilitates concise interpretation of item relations by regulating complexity of a network underlying the test items. The viability and effectiveness are demonstrated via simulation and a real data example. Results from the simulation study suggest that the proposed methods adequately recover the model parameters in the presence of locally dependent items and lead to a substantial improvement in estimation accuracy compared to the standard DCM approach. The analysis of real data demonstrates that the graphical DCM provides a useful summary of item interactions in regards to the existence and extent of local dependence.
A new family of penalty functions, adaptive to likelihood, is introduced for model selection in general regression models. It arises naturally through assuming certain types of prior distribution on the regression parameters. To study stability prope rties of the penalized maximum likelihood estimator, two types of asymptotic stability are defined. Theoretical properties, including the parameter estimation consistency, model selection consistency, and asymptotic stability, are established under suitable regularity conditions. An efficient coordinate-descent algorithm is proposed. Simulation results and real data analysis show that the proposed method has competitive performance in comparison with existing ones.
This paper investigates the (in)-consistency of various bootstrap methods for making inference on a change-point in time in the Cox model with right censored survival data. A criterion is established for the consistency of any bootstrap method. It is shown that the usual nonparametric bootstrap is inconsistent for the maximum partial likelihood estimation of the change-point. A new model-based bootstrap approach is proposed and its consistency established. Simulation studies are carried out to assess the performance of various bootstrap schemes.
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequali ties based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
We present a method to stop the evaluation of a prediction process when the result of the full evaluation is obvious. This trait is highly desirable in prediction tasks where a predictor evaluates all its features for every example in large datasets. We observe that some examples are easier to classify than others, a phenomenon which is characterized by the event when most of the features agree on the class of an example. By stopping the feature evaluation when encountering an easy- to-classify example, the predictor can achieve substantial gains in computation. Our method provides a natural attention mechanism for linear predictors where the predictor concentrates most of its computation on hard-to-classify examples and quickly discards easy-to-classify ones. By modifying a linear prediction algorithm such as an SVM or AdaBoost to include our attentive method we prove that the average number of features computed is O(sqrt(n log 1/sqrt(delta))) where n is the original number of features, and delta is the error rate incurred due to early stopping. We demonstrate the effectiveness of Attentive Prediction on MNIST, Real-sim, Gisette, and synthetic datasets.
During the last decade Levy processes with jumps have received increasing popularity for modelling market behaviour for both derviative pricing and risk management purposes. Chan et al. (2009) introduced the use of empirical likelihood methods to est imate the parameters of various diffusion processes via their characteristic functions which are readily avaiable in most cases. Return series from the market are used for estimation. In addition to the return series, there are many derivatives actively traded in the market whose prices also contain information about parameters of the underlying process. This observation motivates us, in this paper, to combine the return series and the associated derivative prices observed at the market so as to provide a more reflective estimation with respect to the market movement and achieve a gain of effciency. The usual asymptotic properties, including consistency and asymptotic normality, are established under suitable regularity conditions. Simulation and case studies are performed to demonstrate the feasibility and effectiveness of the proposed method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا