ﻻ يوجد ملخص باللغة العربية
Multidimensional unfolding methods are widely used for visualizing item response data. Such methods project respondents and items simultaneously onto a low-dimensional Euclidian space, in which respondents and items are represented by ideal points, with person-person, item-item, and person-item similarities being captured by the Euclidian distances between the points. In this paper, we study the visualization of multidimensional unfolding from a statistical perspective. We cast multidimensional unfolding into an estimation problem, where the respondent and item ideal points are treated as parameters to be estimated. An estimator is then proposed for the simultaneous estimation of these parameters. Asymptotic theory is provided for the recovery of the ideal points, shedding lights on the validity of model-based visualization. An alternating projected gradient descent algorithm is proposed for the parameter estimation. We provide two illustrative examples, one on users movie rating and the other on senate roll call voting.
Objective Bayesian inference procedures are derived for the parameters of the multivariate random effects model generalized to elliptically contoured distributions. The posterior for the overall mean vector and the between-study covariance matrix is
Univariate Weibull distribution is a well-known lifetime distribution and has been widely used in reliability and survival analysis. In this paper, we introduce a new family of bivariate generalized Weibull (BGW) distributions, whose univariate margi
The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio $p/n to infty$. Based on this CLT result,
Parameter inference of dynamical systems is a challenging task faced by many researchers and practitioners across various fields. In many applications, it is common that only limited variables are observable. In this paper, we propose a method for pa
This paper establishes a global bias-correction divide-and-conquer (GBC-DC) rule for biased estimation under the case of memory constraint. In order to introduce the new estimation, a closed representation of the local estimators obtained by the data