ﻻ يوجد ملخص باللغة العربية
During the last decade Levy processes with jumps have received increasing popularity for modelling market behaviour for both derviative pricing and risk management purposes. Chan et al. (2009) introduced the use of empirical likelihood methods to estimate the parameters of various diffusion processes via their characteristic functions which are readily avaiable in most cases. Return series from the market are used for estimation. In addition to the return series, there are many derivatives actively traded in the market whose prices also contain information about parameters of the underlying process. This observation motivates us, in this paper, to combine the return series and the associated derivative prices observed at the market so as to provide a more reflective estimation with respect to the market movement and achieve a gain of effciency. The usual asymptotic properties, including consistency and asymptotic normality, are established under suitable regularity conditions. Simulation and case studies are performed to demonstrate the feasibility and effectiveness of the proposed method.
The aim of this study is to investigate quantitatively whether share prices deviated from company fundamentals in the stock market crash of 2008. For this purpose, we use a large database containing the balance sheets and share prices of 7,796 worldw
In a Gaussian graphical model, the conditional independence between two variables are characterized by the corresponding zero entries in the inverse covariance matrix. Maximum likelihood method using the smoothly clipped absolute deviation (SCAD) pen
Nonparametric empirical Bayes methods provide a flexible and attractive approach to high-dimensional data analysis. One particularly elegant empirical Bayes methodology, involving the Kiefer-Wolfowitz nonparametric maximum likelihood estimator (NPMLE
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with
High-dimensional statistical inference with general estimating equations are challenging and remain less explored. In this paper, we study two problems in the area: confidence set estimation for multiple components of the model parameters, and model