ترغب بنشر مسار تعليمي؟ اضغط هنا

The paradox of cooperation among selfish individuals still puzzles scientific communities. Although a large amount of evidence has demonstrated that cooperator clusters in spatial games are effective to protect cooperators against the invasion of def ectors, we continue to lack the condition for the formation of a giant cooperator cluster that assures the prevalence of cooperation in a system. Here, we study the dynamical organization of cooperator clusters in spatial prisoners dilemma game to offer the condition for the dominance of cooperation, finding that a phase transition characterized by the emergence of a large spanning cooperator cluster occurs when the initial fraction of cooperators exceeds a certain threshold. Interestingly, the phase transition belongs to different universality classes of percolation determined by the temptation to defect $b$. Specifically, on square lattices, $1<b<4/3$ leads to a phase transition pertaining to the class of regular site percolation, whereas $3/2<b<2$ gives rise to a phase transition subject to invasion percolation with trapping. Our findings offer deeper understanding of the cooperative behaviors in nature and society.
137 - Dong Hao , Zhihai Rong , Tao Zhou 2014
Repeated game theory has been one of the most prevailing tools for understanding the long-run relationships, which are footstones in building human society. Recent works have revealed a new set of zero-determinant (ZD) strategies, which is an importa nt advance in repeated games. A ZD strategy player can exert a unilaterally control on two players payoffs. In particular he can deterministically set the opponents payoff, or enforce an unfair linear relationship between the players payoffs, thereby always seizing an advantageous share of payoffs. One of the limitations of the original ZD strategy, however, is that it does not capture the notion of robustness when the game is subjected to stochastic errors. In this paper, we propose a general model of ZD strategies for noisy repeated games, and find that ZD strategies have high robustness against errors. We further derive the pinning strategy under noise, by which the ZD strategy player coercively set the opponents expected payoff to his desired level, although his payoff control ability declines with the increase of noise strength. Due to the uncertainty caused by noise, the ZD strategy player cannot secure his payoff to be higher than the opponents, which implies strong extortions do not exist even under low noise. While we show that the ZD strategy player can still establish a novel kind of extortions, named weak extortions, where any increase of his own payoff always exceeds that of the opponents by a fixed percentage, and the conditions under which the weak extortions can be realized are more stringent as the noise becomes stronger.
84 - Zhi-Xi Wu , Zhihai Rong , 2014
Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [Muchnik, emph{et al.}, Sci. Rep. textbf{3}, 1783 (2013)]. On the other hand, community structure is ubiquitous in biological a nd social networks [M.~E.~J. Newman, Nat. Phys. textbf{8}, 25 (2012)]. Motivated by these facts, we here consider the evolutionary Prisoners dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from social point of view) for the strategy updating under both weak- and strong-selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to playing games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in harsh environment (the action for cooperation is costly) under strong selection, while it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the fixation of cooperation under strong-selection, in contrast to the games evolving on the randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.
126 - Zhi-Xi Wu , Zhihai Rong 2014
We study the evolution of cooperation in spatial Prisoners dilemma games with and without extortion by adopting aspiration-driven strategy updating rule. We focus explicitly on how the strategy updating manner (whether synchronous or asynchronous) an d also the introduction of extortion strategy affect the collective outcome of the games. By means of Monte Carlo (MC) simulations as well as dynamical cluster techniques, we find that the involvement of extortioners facilitates the boom of cooperators in the population (and whom can always dominate the population if the temptation to defect is not too large) for both synchronous and asynchronous strategy updating, in stark contrast to the otherwise case, where cooperation is promoted for intermediate aspiration level with synchronous strategy updating, but is remarkably inhibited if the strategy updating is implemented asynchronously. We explain the results by configurational analysis and find that the presence of extortion leads to the checkerboard-like ordering of cooperators and extortioners, which enable cooperators to prevail in the population with both strategy updating manners. Moreover, extortion itself is evolutionary stable, and therefore acts as the incubator for the evolution of cooperation.
Recently, Press and Dyson have proposed a new class of probabilistic and conditional strategies for the two-player iterated Prisoners Dilemma, so-called zero-determinant strategies. A player adopting zero-determinant strategies is able to pin the exp ected payoff of the opponents or to enforce a linear relationship between his own payoff and the opponents payoff, in a unilateral way. This paper considers zero-determinant strategies in the iterated public goods game, a representative multi-player evolutionary game where in each round each player will choose whether or not put his tokens into a public pot, and the tokens in this pot are multiplied by a factor larger than one and then evenly divided among all players. The analytical and numerical results exhibit a similar yet different scenario to the case of two-player games: (i) with small number of players or a small multiplication factor, a player is able to unilaterally pin the expected total payoff of all other players; (ii) a player is able to set the ratio between his payoff and the total payoff of all other players, but this ratio is limited by an upper bound if the multiplication factor exceeds a threshold that depends on the number of players.
We study an evolutionary spatial prisoners dilemma game where the fitness of the players is determined by both the payoffs from the current interaction and their history. We consider the situation where the selection timescale is slower than the inte raction timescale. This is done by implementing probabilistic reproduction on an individual level. We observe that both too fast and too slow reproduction rates hamper the emergence of cooperation. In other words, there exists an intermediate selection timescale that maximizes cooperation. Another factor we find to promote cooperation is a diversity of reproduction timescales.
155 - Xing Li , Yonghui Wu , Zhihai Rong 2009
The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behaviors on the structured scale-free network. On the contrary of the conventional wisdom that scale-free networks a re prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network while performing the prisoners dilemma (PD) game. Firstly, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated `large-world behavior in the structured scale-free network inhibit the spread of cooperation. The findings may help enlighten further studies on evolutionary dynamics of the PD game in scale-free networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا