ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-Determinant Strategies in the Iterated Public Goods Game

193   0   0.0 ( 0 )
 نشر من قبل Zhihai Rong
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Press and Dyson have proposed a new class of probabilistic and conditional strategies for the two-player iterated Prisoners Dilemma, so-called zero-determinant strategies. A player adopting zero-determinant strategies is able to pin the expected payoff of the opponents or to enforce a linear relationship between his own payoff and the opponents payoff, in a unilateral way. This paper considers zero-determinant strategies in the iterated public goods game, a representative multi-player evolutionary game where in each round each player will choose whether or not put his tokens into a public pot, and the tokens in this pot are multiplied by a factor larger than one and then evenly divided among all players. The analytical and numerical results exhibit a similar yet different scenario to the case of two-player games: (i) with small number of players or a small multiplication factor, a player is able to unilaterally pin the expected total payoff of all other players; (ii) a player is able to set the ratio between his payoff and the total payoff of all other players, but this ratio is limited by an upper bound if the multiplication factor exceeds a threshold that depends on the number of players.



قيم البحث

اقرأ أيضاً

188 - Dong Hao , Zhihai Rong , Tao Zhou 2014
Repeated game theory has been one of the most prevailing tools for understanding the long-run relationships, which are footstones in building human society. Recent works have revealed a new set of zero-determinant (ZD) strategies, which is an importa nt advance in repeated games. A ZD strategy player can exert a unilaterally control on two players payoffs. In particular he can deterministically set the opponents payoff, or enforce an unfair linear relationship between the players payoffs, thereby always seizing an advantageous share of payoffs. One of the limitations of the original ZD strategy, however, is that it does not capture the notion of robustness when the game is subjected to stochastic errors. In this paper, we propose a general model of ZD strategies for noisy repeated games, and find that ZD strategies have high robustness against errors. We further derive the pinning strategy under noise, by which the ZD strategy player coercively set the opponents expected payoff to his desired level, although his payoff control ability declines with the increase of noise strength. Due to the uncertainty caused by noise, the ZD strategy player cannot secure his payoff to be higher than the opponents, which implies strong extortions do not exist even under low noise. While we show that the ZD strategy player can still establish a novel kind of extortions, named weak extortions, where any increase of his own payoff always exceeds that of the opponents by a fixed percentage, and the conditions under which the weak extortions can be realized are more stringent as the noise becomes stronger.
Evolutionary game theory is used to model the evolution of competing strategies in a population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in which any competing mutated strategy would be wiped out from a population. I f a strategy is weak evolutionarily stable, the competing strategy may manage to survive within the network. Understanding the network-related factors that affect the evolutionary stability of a strategy would be critical in making accurate predictions about the behaviour of a strategy in a real-world strategic decision making environment. In this work, we evaluate the effect of network topology on the evolutionary stability of a strategy. We focus on two well-known strategies known as the Zero-determinant strategy and the Pavlov strategy. Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed population of players. We identify that the Zero-determinant strategy may survive, and may even dominate in a population of players connected through a non-homogeneous network. We introduce the concept of `topological stability to denote this phenomenon. We argue that not only the network topology, but also the evolutionary process applied and the initial distribution of strategies are critical in determining the evolutionary stability of strategies. Further, we observe that topological stability could affect other well-known strategies as well, such as the general cooperator strategy and the cooperator strategy. Our observations suggest that the variation of evolutionary stability due to topological stability of strategies may be more prevalent in the social context of strategic evolution, in comparison to the biological context.
108 - Daizhan Cheng 2021
A formula is presented for designing zero-determinant(ZD) strategies of general finite games, which have $n$ players and players can have different numbers of strategies. To this end, using semi-tensor product (STP) of matrices, the profile evolution ary equation for repeated finite games is obtained. Starting from it, the ZD strategies are developed for general finite games, based on the same technique proposed by Press and Dyson cite{pre12}. A formula is obtain to design ZD strategies for any player directly, ignoring the original ZD design process. Necessary and sufficient condition is obtained to ensure the effectiveness of the designed ZD strategies. As a consequence, it is also clear that player $i$ is able to unilaterally design $|S_i|-1$ dominating linear relations about the expected payoffs of all players. Finally, the fictitious opponent player is proposed for networked evolutionary networks (NEGs). Using it, the ZD-strategies are applied to NEGs. It is surprising that an individual in a network may use ZD strategies to conflict the whole rest network.
Public goods games in undirected networks are generally known to have pure Nash equilibria, which are easy to find. In contrast, we prove that, in directed networks, a broad range of public goods games have intractable equilibrium problems: The exist ence of pure Nash equilibria is NP-hard to decide, and mixed Nash equilibria are PPAD-hard to find. We define general utility public goods games, and prove a complexity dichotomy result for finding pure equilibria, and a PPAD-completeness proof for mixed Nash equilibria. Even in the divisible goods variant of the problem, where existence is easy to prove, finding the equilibrium is PPAD-complete. Finally, when the treewidth of the directed network is appropriately bounded, we prove that polynomial-time algorithms are possible.
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such game s, contributions to the public good are made only by cooperators, while all players, including defectors, can reap public goods benefits. Classic results of game theory show that mutual defection, as opposed to cooperation, is the Nash Equilibrium of PGGs in well-mixed populations, where each player interacts with all others. In this paper, we explore the coevolutionary dynamics of a low information public goods game on a network without spatial constraints in which players adapt to their environment in order to increase individual payoffs. Players adapt by changing their strategies, either to cooperate or to defect, and by altering their social connections. We find that even if players do not know other players strategies and connectivity, cooperation can arise and persist despite large short-term fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا