ترغب بنشر مسار تعليمي؟ اضغط هنا

We generalize Ngs two-variable algebraic/combinatorial $0$-th framed knot contact homology for framed oriented knots in $S^3$ to knots in $S^1 times S^2$, and prove that the resulting knot invariant is the same as the framed cord algebra of knots. Ac tually, our cord algebra has an extra variable, which potentially corresponds to the third variable in Ngs three-variable knot contact homology. Our main tool is Lins generalization of the Markov theorem for braids in $S^3$ to braids in $S^1 times S^2$. We conjecture that our framed cord algebras are always finitely generated for non-local knots.
We show that braidings of the metaplectic anyons $X_epsilon$ in $SO(3)_2=SU(2)_4$ with their total charge equal to the metaplectic mode $Y$ supplemented with measurements of the total charge of two metaplectic anyons are universal for quantum computa tion. We conjecture that similar universal computing models can be constructed for all metaplectic anyon systems $SO(p)_2$ for any odd prime $pgeq 5$. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits.
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons w ith current technology all belong to a class that is called weakly integral---anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions---$D(S_3)$, the quantum double of $S_3$. Since all anyons in $D(S_3)$ have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
We introduce and study a class of anyon models that are a natural generalization of Ising anyons and Majorana fermion zero modes. These models combine an Ising anyon sector with a sector associated with $SO(m)_2$ Chern-Simons theory. We show how they can arise in a simple scenario for electron fractionalization and give a complete account of their quasiparticles types, fusion rules, and braiding. We show that the image of the braid group is finite for a collection of $2n$ fundamental quasiparticles and is a proper subgroup of the metaplectic representation of $Sp(2n-2,mathbb{F}_m)ltimes H(2n-2,mathbb{F}_m)$, where $Sp(2n-2,mathbb{F}_m)$ is the symplectic group over the finite field $mathbb{F}_m$ and $H(2n-2,mathbb{F}_m)$ is the extra special group (also called the $(2n-1)$-dimensional Heisenberg group) over $mathbb{F}_m$. Moreover, the braiding of fundamental quasiparticles can be efficiently simulated classically. However, computing the result of braiding a certain type of composite quasiparticle is $# P$-hard, although it is not universal for quantum computation because it has a finite braid group image. This a rare example of a topological phase that is not universal for quantum computation through braiding but nevertheless has $# P$-hard link invariants. We argue that our models are closely related to recent analyses finding non-Abelian anyonic properties for defects in quantum Hall systems, generalizing Majorana zero modes in quasi-1D systems.
We discuss how to construct models of interacting anyons by generalizing quantum spin Hamiltonians to anyonic degrees of freedom. The simplest interactions energetically favor pairs of anyons to fuse into the trivial (identity) channel, similar to th e quantum Heisenberg model favoring pairs of spins to form spin singlets. We present an introduction to the theory of anyons and discuss in detail how basis sets and matrix representations of the interaction terms can be obtained, using non-Abelian Fibonacci anyons as example. Besides discussing the golden chain, a one-dimensional system of anyons with nearest neighbor interactions, we also present the derivation of more complicated interaction terms, such as three-anyon interactions in the spirit of the Majumdar-Ghosh spin chain, longer range interactions and two-leg ladders. We also discuss generalizations to anyons with general non-Abelian su(2)_k statistics. The k to infinity limit of the latter yields ordinary SU(2) spin chains.
It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the $E_6$ subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair $(G,lambda)$. The cases that are constructed mathematically include: 1. $G$ is a finite group--the Dijkgraaf-Witten TQFTs; 2. $G$ is torus $T^n$; 3. $G$ is a connected semi-simple Lie group--the Reshetikhin-Turaev TQFTs. We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half $E_6$ TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا