ﻻ يوجد ملخص باللغة العربية
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral---anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions---$D(S_3)$, the quantum double of $S_3$. Since all anyons in $D(S_3)$ have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
We show that braidings of the metaplectic anyons $X_epsilon$ in $SO(3)_2=SU(2)_4$ with their total charge equal to the metaplectic mode $Y$ supplemented with measurements of the total charge of two metaplectic anyons are universal for quantum computa
It has recently been shown that a parametrically driven oscillator with Kerr nonlinearity yields a Schrodinger cat state via quantum adiabatic evolution through its bifurcation point and a network of such nonlinear oscillators can be used for solving
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quan
In some of the earliest work on quantum mechanical computers, Feynman showed how to implement universal quantum computation by the dynamics of a time-independent Hamiltonian. I show that this remains possible even if the Hamiltonian is restricted to
We present two universal models of quantum computation with a time-independent, frustration-free Hamiltonian. The first construction uses 3-local (qubit) projectors, and the second one requires only 2-local qubit-qutrit projectors. We build on Feynma