ﻻ يوجد ملخص باللغة العربية
We introduce and study a class of anyon models that are a natural generalization of Ising anyons and Majorana fermion zero modes. These models combine an Ising anyon sector with a sector associated with $SO(m)_2$ Chern-Simons theory. We show how they can arise in a simple scenario for electron fractionalization and give a complete account of their quasiparticles types, fusion rules, and braiding. We show that the image of the braid group is finite for a collection of $2n$ fundamental quasiparticles and is a proper subgroup of the metaplectic representation of $Sp(2n-2,mathbb{F}_m)ltimes H(2n-2,mathbb{F}_m)$, where $Sp(2n-2,mathbb{F}_m)$ is the symplectic group over the finite field $mathbb{F}_m$ and $H(2n-2,mathbb{F}_m)$ is the extra special group (also called the $(2n-1)$-dimensional Heisenberg group) over $mathbb{F}_m$. Moreover, the braiding of fundamental quasiparticles can be efficiently simulated classically. However, computing the result of braiding a certain type of composite quasiparticle is $# P$-hard, although it is not universal for quantum computation because it has a finite braid group image. This a rare example of a topological phase that is not universal for quantum computation through braiding but nevertheless has $# P$-hard link invariants. We argue that our models are closely related to recent analyses finding non-Abelian anyonic properties for defects in quantum Hall systems, generalizing Majorana zero modes in quasi-1D systems.
We provide a current perspective on the rapidly developing field of Majorana zero modes in solid state systems. We emphasize the theoretical prediction, experimental realization, and potential use of Majorana zero modes in future information processi
Zero modes arising from a planar Majorana equation in the presence of $N$ vortices require an $mathcal{N}$-dimensional state-space, where $mathcal{N} = 2^{N/2}$ for $N$ even and $mathcal{N} = 2^{(N + 1)/2}$ for $N$ odd. The mode operators form a restricted $mathcal{N}$-dimensional Clifford algebra.
Topological excitations, such as Majorana zero modes, are a promising route for encoding quantum information. Topologically protected gates of Majorana qubits, based on their braiding, will require some form of network. Here, we propose to build such
We describe the occurrence and physical role of zero-energy modes in the Dirac equation with a topologically non-trivial background.
We investigate the number-anomalous of the Majorana zero modes in the non-Hermitian Kitaev chain, whose hopping and superconductor paring strength are both imbalanced. We find that the combination of two imbalanced non-Hermitian terms can induce defe