ترغب بنشر مسار تعليمي؟ اضغط هنا

The annotation for large-scale point clouds is still time-consuming and unavailable for many real-world tasks. Point cloud pre-training is one potential solution for obtaining a scalable model for fast adaptation. Therefore, in this paper, we investi gate a new self-supervised learning approach, called Mixing and Disentangling (MD), for point cloud pre-training. As the name implies, we explore how to separate the original point cloud from the mixed point cloud, and leverage this challenging task as a pretext optimization objective for model training. Considering the limited training data in the original dataset, which is much less than prevailing ImageNet, the mixing process can efficiently generate more high-quality samples. We build one baseline network to verify our intuition, which simply contains two modules, encoder and decoder. Given a mixed point cloud, the encoder is first pre-trained to extract the semantic embedding. Then an instance-adaptive decoder is harnessed to disentangle the point clouds according to the embedding. Albeit simple, the encoder is inherently able to capture the point cloud keypoints after training and can be fast adapted to downstream tasks including classification and segmentation by the pre-training and fine-tuning paradigm. Extensive experiments on two datasets show that the encoder + ours (MD) significantly surpasses that of the encoder trained from scratch and converges quickly. In ablation studies, we further study the effect of each component and discuss the advantages of the proposed self-supervised learning strategy. We hope this self-supervised learning attempt on point clouds can pave the way for reducing the deeply-learned model dependence on large-scale labeled data and saving a lot of annotation costs in the future.
Obtaining viewer responses from videos can be useful for creators and streaming platforms to analyze the video performance and improve the future user experience. In this report, we present our method for 2021 Evoked Expression from Videos Challenge. In particular, our model utilizes both audio and image modalities as inputs to predict emotion changes of viewers. To model long-range emotion changes, we use a GRU-based model to predict one sparse signal with 1Hz. We observe that the emotion changes are smooth. Therefore, the final dense prediction is obtained via linear interpolating the signal, which is robust to the prediction fluctuation. Albeit simple, the proposed method has achieved pearsons correlation score of 0.04430 on the final private test set.
Vehicle search is one basic task for the efficient traffic management in terms of the AI City. Most existing practices focus on the image-based vehicle matching, including vehicle re-identification and vehicle tracking. In this paper, we apply one ne w modality, i.e., the language description, to search the vehicle of interest and explore the potential of this task in the real-world scenario. The natural language-based vehicle search poses one new challenge of fine-grained understanding of both vision and language modalities. To connect language and vision, we propose to jointly train the state-of-the-art vision models with the transformer-based language model in an end-to-end manner. Except for the network structure design and the training strategy, several optimization objectives are also re-visited in this work. The qualitative and quantitative experiments verify the effectiveness of the proposed method. Our proposed method has achieved the 1st place on the 5th AI City Challenge, yielding competitive performance 18.69% MRR accuracy on the private test set. We hope this work can pave the way for the future study on using language description effectively and efficiently for real-world vehicle retrieval systems. The code will be available at https://github.com/ShuaiBai623/AIC2021-T5-CLV.
The goal of person search is to localize and match query persons from scene images. For high efficiency, one-step methods have been developed to jointly handle the pedestrian detection and identification sub-tasks using a single network. There are tw o major challenges in the current one-step approaches. One is the mutual interference between the optimization objectives of multiple sub-tasks. The other is the sub-optimal identification feature learning caused by small batch size when end-to-end training. To overcome these problems, we propose a decoupled and memory-reinforced network (DMRNet). Specifically, to reconcile the conflicts of multiple objectives, we simplify the standard tightly coupled pipelines and establish a deeply decoupled multi-task learning framework. Further, we build a memory-reinforced mechanism to boost the identification feature learning. By queuing the identification features of recently accessed instances into a memory bank, the mechanism augments the similarity pair construction for pairwise metric learning. For better encoding consistency of the stored features, a slow-moving average of the network is applied for extracting these features. In this way, the dual networks reinforce each other and converge to robust solution states. Experimentally, the proposed method obtains 93.2% and 46.9% mAP on CUHK-SYSU and PRW datasets, which exceeds all the existing one-step methods.
The re-ranking approach leverages high-confidence retrieved samples to refine retrieval results, which have been widely adopted as a post-processing tool for image retrieval tasks. However, we notice one main flaw of re-ranking, i.e., high computatio nal complexity, which leads to an unaffordable time cost for real-world applications. In this paper, we revisit re-ranking and demonstrate that re-ranking can be reformulated as a high-parallelism Graph Neural Network (GNN) function. In particular, we divide the conventional re-ranking process into two phases, i.e., retrieving high-quality gallery samples and updating features. We argue that the first phase equals building the k-nearest neighbor graph, while the second phase can be viewed as spreading the message within the graph. In practice, GNN only needs to concern vertices with the connected edges. Since the graph is sparse, we can efficiently update the vertex features. On the Market-1501 dataset, we accelerate the re-ranking processing from 89.2s to 9.4ms with one K40m GPU, facilitating the real-time post-processing. Similarly, we observe that our method achieves comparable or even better retrieval results on the other four image retrieval benchmarks, i.e., VeRi-776, Oxford-5k, Paris-6k and University-1652, with limited time cost. Our code is publicly available.
Cross-view geo-localization is to spot images of the same geographic target from different platforms, e.g., drone-view cameras and satellites. It is challenging in the large visual appearance changes caused by extreme viewpoint variations. Existing m ethods usually concentrate on mining the fine-grained feature of the geographic target in the image center, but underestimate the contextual information in neighbor areas. In this work, we argue that neighbor areas can be leveraged as auxiliary information, enriching discriminative clues for geolocalization. Specifically, we introduce a simple and effective deep neural network, called Local Pattern Network (LPN), to take advantage of contextual information in an end-to-end manner. Without using extra part estimators, LPN adopts a square-ring feature partition strategy, which provides the attention according to the distance to the image center. It eases the part matching and enables the part-wise representation learning. Owing to the square-ring partition design, the proposed LPN has good scalability to rotation variations and achieves competitive results on three prevailing benchmarks, i.e., University-1652, CVUSA and CVACT. Besides, we also show the proposed LPN can be easily embedded into other frameworks to further boost performance.
People live in a 3D world. However, existing works on person re-identification (re-id) mostly consider the semantic representation learning in a 2D space, intrinsically limiting the understanding of people. In this work, we address this limitation by exploring the prior knowledge of the 3D body structure. Specifically, we project 2D images to a 3D space and introduce a novel parameter-efficient Omni-scale Graph Network (OG-Net) to learn the pedestrian representation directly from 3D point clouds. OG-Net effectively exploits the local information provided by sparse 3D points and takes advantage of the structure and appearance information in a coherent manner. With the help of 3D geometry information, we can learn a new type of deep re-id feature free from noisy variants, such as scale and viewpoint. To our knowledge, we are among the first attempts to conduct person re-identification in the 3D space. We demonstrate through extensive experiments that the proposed method (1) eases the matching difficulty in the traditional 2D space, (2) exploits the complementary information of 2D appearance and 3D structure, (3) achieves competitive results with limited parameters on four large-scale person re-id datasets, and (4) has good scalability to unseen datasets. Our code, models and generated 3D human data are publicly available at https://github.com/layumi/person-reid-3d .
One fundamental challenge of vehicle re-identification (re-id) is to learn robust and discriminative visual representation, given the significant intra-class vehicle variations across different camera views. As the existing vehicle datasets are limit ed in terms of training images and viewpoints, we propose to build a unique large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets, and design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet. The first stage of our approach is to learn the generic representation for all domains (i.e., source vehicle datasets) by training with the conventional classification loss. This stage relaxes the full alignment between the training and testing domains, as it is agnostic to the target vehicle domain. The second stage is to fine-tune the trained model purely based on the target vehicle set, by minimizing the distribution discrepancy between our VehicleNet and any target domain. We discuss our proposed multi-source dataset VehicleNet and evaluate the effectiveness of the two-stage progressive representation learning through extensive experiments. We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge, and competitive results on two other public vehicle re-id datasets, i.e., VeRi-776 and VehicleID. We hope this new VehicleNet dataset and the learned robust representations can pave the way for vehicle re-id in the real-world environments.
In human parsing, the pixel-wise classification loss has drawbacks in its low-level local inconsistency and high-level semantic inconsistency. The introduction of the adversarial network tackles the two problems using a single discriminator. However, the two types of parsing inconsistency are generated by distinct mechanisms, so it is difficult for a single discriminator to solve them both. To address the two kinds of inconsistencies, this paper proposes the Macro-Micro Adversarial Net (MMAN). It has two discriminators. One discriminator, Macro D, acts on the low-resolution label map and penalizes semantic inconsistency, e.g., misplaced body parts. The other discriminator, Micro D, focuses on multiple patches of the high-resolution label map to address the local inconsistency, e.g., blur and hole. Compared with traditional adversarial networks, MMAN not only enforces local and semantic consistency explicitly, but also avoids the poor convergence problem of adversarial networks when handling high resolution images. In our experiment, we validate that the two discriminators are complementary to each other in improving the human parsing accuracy. The proposed framework is capable of producing competitive parsing performance compared with the state-of-the-art methods, i.e., mIoU=46.81% and 59.91% on LIP and PASCAL-Person-Part, respectively. On a relatively small dataset PPSS, our pre-trained model demonstrates impressive generalization ability. The code is publicly available at https://github.com/RoyalVane/MMAN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا