ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoupled and Memory-Reinforced Networks: Towards Effective Feature Learning for One-Step Person Search

67   0   0.0 ( 0 )
 نشر من قبل Chuchu Han
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of person search is to localize and match query persons from scene images. For high efficiency, one-step methods have been developed to jointly handle the pedestrian detection and identification sub-tasks using a single network. There are two major challenges in the current one-step approaches. One is the mutual interference between the optimization objectives of multiple sub-tasks. The other is the sub-optimal identification feature learning caused by small batch size when end-to-end training. To overcome these problems, we propose a decoupled and memory-reinforced network (DMRNet). Specifically, to reconcile the conflicts of multiple objectives, we simplify the standard tightly coupled pipelines and establish a deeply decoupled multi-task learning framework. Further, we build a memory-reinforced mechanism to boost the identification feature learning. By queuing the identification features of recently accessed instances into a memory bank, the mechanism augments the similarity pair construction for pairwise metric learning. For better encoding consistency of the stored features, a slow-moving average of the network is applied for extracting these features. In this way, the dual networks reinforce each other and converge to robust solution states. Experimentally, the proposed method obtains 93.2% and 46.9% mAP on CUHK-SYSU and PRW datasets, which exceeds all the existing one-step methods.



قيم البحث

اقرأ أيضاً

Prior work demonstrated the ability of machine learning to automatically recognize surgical workflow steps from videos. However, these studies focused on only a single type of procedure. In this work, we analyze, for the first time, surgical step rec ognition on four different laparoscopic surgeries: Cholecystectomy, Right Hemicolectomy, Sleeve Gastrectomy, and Appendectomy. Inspired by the traditional apprenticeship model, in which surgical training is based on the Halstedian method, we paraphrase the see one, do one, teach one approach for the surgical intelligence domain as train one, classify one, teach one. In machine learning, this approach is often referred to as transfer learning. To analyze the impact of transfer learning across different laparoscopic procedures, we explore various time-series architectures and examine their performance on each target domain. We introduce a new architecture, the Time-Series Adaptation Network (TSAN), an architecture optimized for transfer learning of surgical step recognition, and we show how TSAN can be pre-trained using self-supervised learning on a Sequence Sorting task. Such pre-training enables TSAN to learn workflow steps of a new laparoscopic procedure type from only a small number of labeled samples from the target procedure. Our proposed architecture leads to better performance compared to other possible architectures, reaching over 90% accuracy when transferring from laparoscopic Cholecystectomy to the other three procedure types.
Incorporating encoding-decoding nets with adversarial nets has been widely adopted in image generation tasks. We observe that the state-of-the-art achievements were obtained by carefully balancing the reconstruction loss and adversarial loss, and suc h balance shifts with different network structures, datasets, and training strategies. Empirical studies have demonstrated that an inappropriate weight between the two losses may cause instability, and it is tricky to search for the optimal setting, especially when lacking prior knowledge on the data and network. This paper gives the first attempt to relax the need of manual balancing by proposing the concept of textit{decoupled learning}, where a novel network structure is designed that explicitly disentangles the backpropagation paths of the two losses. Experimental results demonstrate the effectiveness, robustness, and generality of the proposed method. The other contribution of the paper is the design of a new evaluation metric to measure the image quality of generative models. We propose the so-called textit{normalized relative discriminative score} (NRDS), which introduces the idea of relative comparison, rather than providing absolute estimates like existing metrics.
Person re-identification has achieved great progress with deep convolutional neural networks. However, most previous methods focus on learning individual appearance feature embedding, and it is hard for the models to handle difficult situations with different illumination, large pose variance and occlusion. In this work, we take a step further and consider employing context information for person search. For a probe-gallery pair, we first propose a contextual instance expansion module, which employs a relative attention module to search and filter useful context information in the scene. We also build a graph learning framework to effectively employ context pairs to update target similarity. These two modules are built on top of a joint detection and instance feature learning framework, which improves the discriminativeness of the learned features. The proposed framework achieves state-of-the-art performance on two widely used person search datasets.
Person-job fit is to match candidates and job posts on online recruitment platforms using machine learning algorithms. The effectiveness of matching algorithms heavily depends on the learned representations for the candidates and job posts. In this p aper, we propose to learn comprehensive and effective representations of the candidates and job posts via feature fusion. First, in addition to applying deep learning models for processing the free text in resumes and job posts, which is adopted by existing methods, we extract semantic entities from the whole resume (and job post) and then learn features for them. By fusing the features from the free text and the entities, we get a comprehensive representation for the information explicitly stated in the resume and job post. Second, however, some information of a candidate or a job may not be explicitly captured in the resume or job post. Nonetheless, the historical applications including accepted and rejected cases can reveal some implicit intentions of the candidates or recruiters. Therefore, we propose to learn the representations of implicit intentions by processing the historical applications using LSTM. Last, by fusing the representations for the explicit and implicit intentions, we get a more comprehensive and effective representation for person-job fit. Experiments over 10 months real data show that our solution outperforms existing methods with a large margin. Ablation studies confirm the contribution of each component of the fused representation. The extracted semantic entities help interpret the matching results during the case study.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident ification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا