ﻻ يوجد ملخص باللغة العربية
In human parsing, the pixel-wise classification loss has drawbacks in its low-level local inconsistency and high-level semantic inconsistency. The introduction of the adversarial network tackles the two problems using a single discriminator. However, the two types of parsing inconsistency are generated by distinct mechanisms, so it is difficult for a single discriminator to solve them both. To address the two kinds of inconsistencies, this paper proposes the Macro-Micro Adversarial Net (MMAN). It has two discriminators. One discriminator, Macro D, acts on the low-resolution label map and penalizes semantic inconsistency, e.g., misplaced body parts. The other discriminator, Micro D, focuses on multiple patches of the high-resolution label map to address the local inconsistency, e.g., blur and hole. Compared with traditional adversarial networks, MMAN not only enforces local and semantic consistency explicitly, but also avoids the poor convergence problem of adversarial networks when handling high resolution images. In our experiment, we validate that the two discriminators are complementary to each other in improving the human parsing accuracy. The proposed framework is capable of producing competitive parsing performance compared with the state-of-the-art methods, i.e., mIoU=46.81% and 59.91% on LIP and PASCAL-Person-Part, respectively. On a relatively small dataset PPSS, our pre-trained model demonstrates impressive generalization ability. The code is publicly available at https://github.com/RoyalVane/MMAN.
How to estimate the quality of the network output is an important issue, and currently there is no effective solution in the field of human parsing. In order to solve this problem, this work proposes a statistical method based on the output probabili
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details
Multiple human parsing aims to segment various human parts and associate each part with the corresponding instance simultaneously. This is a very challenging task due to the diverse human appearance, semantic ambiguity of different body parts, and co
Network embedding aims to embed nodes into a low-dimensional space, while capturing the network structures and properties. Although quite a few promising network embedding methods have been proposed, most of them focus on static networks. In fact, te
Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness among Asian people. Early detection of PACG is essential, so as to provide timely treatment and minimize the vision loss. In the clinical practice, PACG is diagnosed