ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we advocate a novel protocol for the uplink communication in the IRS-assisted massive MIMO systems. Under this protocol, the IRS reflection coefficients are optimized based on the channel covariance matrices, which are generally fixed for many coherence blocks, to boost the long-term performance. Then, given the IRS reflecting coefficients, the BS beamforming vectors are designed in each coherence block based on the effective channel of each user, which is the superposition of its direct and reflected user-IRS-BS channels, to improve the instantaneous performance. Since merely the user effective channels are estimated in each coherence block, the training overhead of this protocol is the same as that in the legacy wireless systems without IRSs. Moreover, in the asymptotic regime that the numbers of IRS elements and BS antennas both go to infinity with a fixed ratio, we manage to first characterize the minimum mean-squared error (MMSE) estimators of the user effective channels and then quantify the closed-form user achievable rates as functions of channel covariance matrices with channel training overhead and estimation error taken into account. Interestingly, it is shown that the properties of channel hardening and favorable propagation still hold for the user effective channels, and satisfactory user rates are thus achievable even if simple BS beamforming solutions, e.g., maximal-ratio combining, are employed. Finally, thanks to the rate characterization, we design a low-complexity algorithm to optimize the IRS reflection coefficients based on channel covariance matrices.
This paper investigates the application of physical-layer network coding (PNC) to Industrial Internet-of-Things (IIoT) where a controller and a robot are out of each others transmission range, and they exchange messages with the assistance of a relay . We particularly focus on a scenario where the controller has more transmitted information, and the channel of the controller is stronger than that of the robot. To reduce the communication latency, we propose an asymmetric transmission scheme where the controller and robot transmit different amount of information in the uplink of PNC simultaneously. To achieve this, the controller chooses a higher order modulation. In addition, the both users apply channel codes to guarantee the reliability. A problem is a superimposed symbol at the relay contains different amount of source information from the two end users. It is thus hard for the relay to deduce meaningful network-coded messages by applying the current PNC decoding techniques which require the end users to transmit the same amount of information. To solve this problem, we propose a lattice-based scheme where the two users encode-and-modulate their information in lattices with different lattice construction levels. Our design is versatile on that the two end users can freely choose their modulation orders based on their channel power, and the design is applicable for arbitrary channel codes.
184 - Zhaorui Wang , Liang Liu , 2020
In a practical massive MIMO (multiple-input multiple-output) system, the number of antennas at a base station (BS) is constrained by the space and cost factors, which limits the throughput gain promised by theoretical analysis. This paper thus studie s the feasibility of adopting the intelligent reflecting surface (IRS) to further improve the beamforming gain of the uplink communications in a massive MIMO system. Under such a novel system, the central question lies in whether the IRS is able to enhance the network throughput as expected, if the channel estimation overhead is taken into account. In this paper, we first show that the favorable propagation property for the conventional massive MIMO system without IRS, i.e., the channels of arbitrary two users are orthogonal, no longer holds for the IRS-assisted massive MIMO system, due to its special channel property that each IRS element reflects the signals from all the users to the BS via the same channel. As a result, the maximal-ratio combining (MRC) receive beamforming strategy leads to strong inter-user interference and thus even lower user rates than those of the massive MIMO system without IRS. To tackle this challenge, we propose a novel strategy for zero-forcing (ZF) beamforming design at the BS and reflection coefficients design at the IRS to efficiently null the inter-user interference. Under our proposed strategy, it is rigorously shown that even if the channel estimation overhead is considered, the IRS-assisted massive MIMO system can always achieve higher throughput compared to its counterpart without IRS, despite the fact that the favorable propagation property no longer holds.
161 - Zhaorui Wang , Liang Liu , 2019
In intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the beamforming gain of IRS because of the considerable overhead required for channel est imation. Specifically, under the current beamforming design for IRS-assisted communications, $KMN+KM$ channel coefficients should be estimated, where $K$, $N$ and $M$ denote the numbers of users, IRS reflecting elements, and antennas at the base station (BS), respectively. To accurately estimate such a large number of channel coefficients within a short time interval, we propose a novel three-phase pilot-based channel estimation framework in this paper for IRS-assisted uplink multiuser communications. Under this framework, we analytically prove that a time duration consisting of $K+N+max(K-1,lceil (K-1)N/M rceil)$ pilot symbols is sufficient for the BS to perfectly recover all the $KMN+KM$ channel coefficients for the case without receiver noise at the BS. In contrast to the channel estimation for conventional uplink communications without IRS where the minimum channel estimation time is independent of the number of receive antennas at the BS, our result reveals the crucial role of massive MIMO (multiple-input multiple-output) in reducing the channel estimation time for IRS-assisted communications. Further, for the case with receiver noise, the user pilot sequences, IRS reflecting coefficients, and BS linear minimum mean-squared error (LMMSE) channel estimators are characterized in closed-form, and the corresponding estimation mean-squared error (MSE) is quantified.
112 - Zhaorui Wang , Liang Liu , 2019
In the intelligent reflecting surface (IRS) assisted communication systems, the acquisition of channel state information (CSI) is a crucial impediment for achieving the passive beamforming gain of IRS because of the considerable overhead required for channel estimation. Specifically, under the current beamforming design for IRS-assisted communications, $KMN+KM$ channel coefficients should be estimated if the passive IRS cannot estimate its channels with the base station (BS) and users due to its lack of radio frequency (RF) chains, where $K$, $N$ and $M$ denote the number of users, reflecting elements of the IRS, and antennas at the BS, respectively. This number can be extremely large in practice considering the current trend of massive MIMO (multiple-input multiple-output), i.e., a large $M$, and massive connectivity, i.e., a large $K$. To accurately estimate such a large number of channel coefficients within a short time interval, we devote our endeavour in this paper to investigating the efficient pilot-based channel estimation method in IRS-assisted uplink communications. Building upon the observation that the IRS reflects the signals from all the users to the BS via the same channels, we analytically verify that a time duration consisting of $K+N+max(K-1,lceil (K-1)N/M rceil)$ pilot symbols is sufficient for the BS to perfectly recover all the $KMN+KM$ channel coefficients in the case without noise. In contrast to the conventional uplink communications without IRS in which the minimum pilot sequence length for channel estimation is independent with the number of receive antennas, our study reveals the significant role of massive MIMO in reducing the channel training time for IRS-assisted communication systems.
This paper investigates coherent detection for physical-layer network coding (PNC) with short packet transmissions in a two-way relay channel (TWRC). PNC turns superimposed EM waves into network-coded messages to improve throughput in a relay system. To achieve this, accurate channel information at the relay is a necessity. Much prior work applies preambles to estimate the channel. For long packets, the preamble overhead is low because of the large data payload. For short packets, that is not the case. To avoid excessive overhead, we consider a set-up in which short packets do not have preambles. A key challenge is how the relay can estimate the channel and detect the network-coded messages jointly based on the received signals from the two end users. We design a coherent detector that makes use of a belief propagation (BP) algorithm to do so. For concreteness, we focus on frequency-shift-keying (FSK) modulation. We show how the BP algorithm can be simplified and made practical with Gaussian-mixture passing. In addition, we demonstrate that prior knowledge on the channel distribution is not needed with our framework. Benchmarked against the detector with prior knowledge of the channel distribution, numerical results show that our detector can have nearly the same performance without such prior knowledge.
This paper investigates noncoherent detection in a two-way relay channel operated with physical layer network coding (PNC), assuming FSK modulation and short-packet transmissions. For noncoherent detection, the detector has access to the magnitude bu t not the phase of the received signal. For conventional communication in which a receiver receives the signal from a transmitter only, the phase does not affect the magnitude, hence the performance of the noncoherent detector is independent of the phase. PNC, however, is a multiuser system in which a receiver receives signals from multiple transmitters simultaneously. The relative phase of the signals from different transmitters affects the received signal magnitude through constructive-destructive interference. In particular, for good performance, the noncoherent detector in PNC must take into account the influence of the relative phase on the signal magnitude. Building on this observation, this paper delves into the fundamentals of PNC noncoherent detector design. To avoid excessive overhead, we do away from preambles. We show how the relative phase can be deduced directly from the magnitudes of the received data symbols. Numerical results show that our detector performs nearly as well as a fictitious optimal detector that has perfect knowledge of the channel gains and relative phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا