ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductors are a striking example of a quantum phenomenon in which electrons move coherently over macroscopic distances without scattering. The high-temperature superconducting oxides(cuprates) are the most studied class of superconductors, comp osed of two-dimensional CuO2 planes separated by other layers which control the electron concentration in the planes. A key unresolved issue in cuprates is the relationship between superconductivity and magnetism. In this paper, we report a sharp phase boundary of static three-dimensional magnetic order in the electron-doped superconductor La2-xCexCuO4-d where small changes in doping or depth from the surface switch the material from superconducting to magnetic. Using low-energy spin polarized muons, we find static magnetism disappears close to where superconductivity begins and well below the doping where dramatic changes in the transport properties are reported. These results indicate a higher degree of symmetry between the electron and hole-doped cuprates than previously thought.
114 - Z. Salman , T. Prokscha , A. Amato 2014
We present a direct spectroscopic observation of a shallow hydrogen-like muonium state in SrTiO$_3$ which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below $sim 70$ K. From the temperature dependence we estimate an activation energy of $sim 50$ meV in the bulk and $sim 23$ meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO$_3$. The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO$_{3}$-based oxide interface systems.
We report the results of a search for spontaneous magnetism due to a time reversal symmetry breaking phase in the superconducting state of (110)-oriented YBCO films, expected near the surface in this geometry. Zero field and weak transverse field mea surements performed using the low-energy muon spin rotation technique with muons implanted few nm inside optimally-doped YBCO-(110) films show no appearance of spontaneous magnetic fields below the superconducting temperature down to 2.9 K. Our results give an upper limit of ~0.02 mT for putative spontaneous internal fields.
117 - Z. Salman , O. Ofer , M. Radovic 2012
We report the observation of weak magnetism in superlattices of LaAlO3/SrTiO3 using beta-detected nuclear magnetic resonance. The spin lattice relaxation rate of 8 Li in superlattices with a spacer layers of 8 and 6 unit cells of LaAlO3 exhibits a st rong peak near ~35 K, whereas no such peak is observed in a superlattice with spacer layer thickness of 3 unit cells. We attribute the observed temperature dependence to slowing down of weakly coupled electronic moments at the LaAlO3/SrTiO3 interface. These results show that the magnetism at the interface depends strongly on the thickness of the spacer layer, and that a minimal thickness of ~4-6 unit cells is required for the appearance of magnetism. A simple model is used to determine that the observed relaxation is due to small fluctuating moments (~0.002 muB) in the two samples with a larger LaAlO3 spacer thickness.
We present a detailed investigation of the magnetic and structural properties of magnetically doped 3D topological insulator Bi2Se3. From muon spin relaxation measurements in zero magnetic field, we find that even 5% Fe doping on the Bi site turns th e full volume of the sample magnetic at temperatures as high as ~250 K. This is also confirmed by magnetization measurements. Two magnetic phases are identified; the first is observed between ~10-250 K while the second appears below ~10 K. These cannot be attributed to impurity phases in the samples. We discuss the nature and details of the observed magnetism and its dependence on doping level.
We present a method to measure the magnetic properties of monolayers and ultra-thin films of magnetic material. The method is based on low energy muon spin rotation and $beta$-detected nuclear magnetic resonance measurements. A spin probe is used as a proximal magnetometer by implanting it in the substrate, just below the magnetic material. We calculate the expected magnetic field distribution sensed by the probe and discuss its temperature and implantation depth dependencies. This method is highly suitable for measuring the magnetic properties of monolayers of single molecule magnets, but can also be extended to ultra-thin magnetic films.
We present an investigation of the near-surface tetragonal phase transition in SrTiO3, using the complementary techniques of beta-detected nuclear magnetic resonance and grazing-incidence X-ray diffraction. The results show a clear depth dependence o f the phase transition on scales of a few microns. The measurements support a model in which there are tetragonal domains forming in the sample at temperatures much higher than the bulk phase transition temperature. Moreover, we find that these domains tend to form at higher temperatures preferentially near the free surface of the crystal. The details of the tetragonal domain formation and their depth/lateral dependencies are discussed.
Weak spontaneous magnetic fields are observed near the surface of YBCO films using Beta-detected Nuclear Magnetic Resonance. Below Tc, the magnetic field distribution in a silver film evaporated onto the superconductor shows additional line broadenin g, indicating the appearance of small disordered magnetic fields. The line broadening increases linearly with a weak external magnetic field applied parallel to the surface, and is depth-independent up to 45 nm from the Ag/YBCO interface. The magnitude of the line broadening at 10 K extrapolated to zero applied field is less than 0.2 G, and is close to nuclear dipolar broadening in the Ag. This indicates that any fields due to broken time-reversal symmetry are less than 0.2 G.
94 - Z. Salman , S. R. Giblin , Y. Lan 2010
We present zero field muon spin lattice relaxation measurements of a Dysprosium triangle molecular magnet. The local magnetic fields sensed by the implanted muons indicate the coexistence of static and dynamic internal magnetic fields below $T^* ~35$ K. Bulk magnetization and heat capacity measurements show no indication of magnetic ordering below this temperature. We attribute the static fields to the slow relaxation of the magnetization in the ground state of Dy3. The fluctuation time of the dynamic part of the field is estimated to be ~0.55 $mu$s at low temperatures
Beta-NMR has been used to study vortex lattice disorder near the surface of the high-Tc superconductor YBCO. The magnetic field distribution from the vortex lattice was detected by implanting a low energy beam of highly polarized 8Li into a thin over layer of silver on optimally doped, twinned and detwinned YBCO samples. The resonance in Ag broadens significantly below the transition temperature Tc as expected from the emerging field lines of the vortex lattice in YBCO. However, the lineshape is more symmetric and the dependence on the applied magnetic field is much weaker than expected from an ideal vortex lattice, indicating that the vortex density varies across the face of the sample, likely due to pinning at twin boundaries. At low temperatures the broadening from such disorder does not scale with the superfluid density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا