ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - F. H. Yu , D. H. Ma , W. Z. Zhuo 2021
Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K , Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1~0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2~2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.
199 - C. Shang , B. Lei , W. Z. Zhuo 2019
Transition-metal-dichalcogenides own a variety of structures as well as electronic properties which can be modulated by structural variations, element substitutions, ion or molecule intercalations, etc. However, there is very limited knowledge on met astable phases of this family, especially the precise regulation of structural changes and accompanied evolution of electronic properties. Here, based on a new developed field-effect transistor with solid ion conductor as the gate dielectric, we report a controllable structural and electronic phase transitions in metastable MoS$_2$ thin flakes driven by electric field. We found that the metastable structure of 1T$^{}$-MoS$_2$ thin flake can be transformed into another metastable structure of 1T$^{}$ -type upon intercalation of lithium regulated by electric field. Moreover, the metastable 1T$^{}$ phase persists during the cycle of intercalation and de-intercalation of lithium controlled by electric field, and the electronic properties can be reversibly manipulated with a remarkable change of resistance by four orders of magnitude from the insulating 1T$^{}$-LiMoS$_2$ to superconducting 1T$^{}$-MoS$_2$. Such reversible and dramatic changes in electronic properties provide intriguing opportunities for development of novel nano-devices with highly tunable characteristics under electric field.
94 - R. M. Liu , W. Z. Zhuo , J. Chen 2017
We study the thermal phase transitions of the four-fold degenerate phases (the plaquette and single stripe states) in two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-l ike behavior is identified both in the parameter regions with the plaquette and single stripe phases, respectively. The four-state Potts-critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size scaling analyses. Furthermore, similar behavior of the transition to the four-fold single stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the four-fold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
96 - J. Chen , W. Z. Zhuo , M. H. Qin 2016
In this work, we study the magnetization behaviors of the classical Ising model on the triangular lattice using Monte Carlo simulations, and pay particular attention to the effect of further-neighbor interactions. Several fascinating spin states are identified to be stabilized in certain magnetic field regions, respectively, resulting in the magnetization plateaus at 2/3, 5/7, 7/9 and 5/6 of the saturation magnetization MS, in addition to the well known plateaus at 0, 1/3 and 1/2 of MS. The stabilization of these interesting orders can be understood as the consequence of the competition between Zeeman energy and exchange energy.
71 - Z. Zhu , C. Cai , C. Niu 2016
A two dimensional (2D) Group-VI Te monolayer, tellurene, is predicted by using the first-principles calculations, which consists of planner four-membered and chair-like six-membered rings arranged alternately in a 2D lattice. The phonon spectra calcu lations, combined with ab initio molecular dynamics (MD) simulations, demonstrate that tellurene is kinetically very stable. The tellurene shows a desirable direct band gap of 1.04 eV and its band structure can be effectively tuned by strain. The effective mass calculations imply that tellurene should also exhibit a relatively high carrier mobility, e.g. compared with MoS2. The significant direct band gap and the high carrier mobility imply that tellurene is a very promising candidate for a new generation of nanoelectronic devices.
133 - W. Z. Zhuo , M. H. Qin , S. Dong 2016
In this work, we study a biquadratic Heisenberg model with coupled orbital degree of freedom using Monte Carlo simulation in order to investigate the phase transitions in iron-based superconductors. The antiferro-quadrupolar state, which may be relat ed to the magnetism of FeSe [Phys. Rev. Lett. 115, 116401 (2015)], is stabilized by the anisotropic biquadratic interaction induced by a ferro-orbital-ordered state. It is revealed that the orbital and nematic transitions occur at the same temperature for all the cases, supporting the mechanism of the orbital-driven nematicity as revealed in most recent experiments [Nat. Mater. 14, 210 (2015)]. In addition, it is suggested that the orbital interaction may lead to the separation of the structural and magnetic phase transitions as observed in many families of iron pnictides.
159 - R. M. Liu 2016
In this work, we investigate the phase transitions and critical behaviors of the frustrated J1-J2-J3 Ising model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the second next nearest neighbor inte raction J3 on the phase transition from a disordered state to the single stripe antiferromagnetic state. A continuous Ashkin-Teller-like transition behavior in a certain range of J3 is identified, while the 4-state Potts-critical end point [J3/J1]C is estimated based on the analytic method reported in earlier work [Jin et al., Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J3 can tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore, it is revealed that an antiferromagnetic J3 can stabilize the staggered dimer state via a phase transition of strong first-order character.
Half a century ago, Mott noted that tuning the carrier density of a semimetal towards zero produces an insulating state in which electrons and holes form bound pairs. It was later argued that such pairing persists even if a semiconducting gap opens i n the underlying band structure, giving rise to what has become known as the strong coupling limit of an `excitonic insulator. While these `weak and `strong coupling extremes were subsequently proposed to be manifestations of the same excitonic state of electronic matter, the predicted continuity of such a phase across a band gap opening has not been realized experimentally in any material. Here we show the quantum limit of graphite, by way of temperature and angle-resolved magnetoresistance measurements, to host such an excitonic insulator phase that evolves continuously between the weak and strong coupling limits. We find that the maximum transition temperature T_EI of the excitonic phase is coincident with a band gap opening in the underlying electronic structure at B_0= 46 +/- 1 T, which is evidenced above T_EI by a thermally broadened inflection point in the magnetoresistance. The overall asymmetry of the observed phase boundary around B_0 closely matches theoretical predictions of a magnetic field-tuned excitonic insulator phase in which the opening of a band gap marks a crossover from predominantly momentum-space pairing to real-space pairing.
257 - B. S. Tan , N. Harrison , Z. Zhu 2015
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic field s, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3O6+x. Here we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveal similar Fermi surface properties to YBa2Cu3O6+x, despite an absence of charge order signatures in the same spectroscopic techniques such as x-ray diffraction that revealed signatures of charge order in YBa2Cu3O6+x. Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional symmetry, and/or its occurrence as a subsidiary to more robust underlying electronic correlations.
72 - R. Dong , R. Rafikov , Z. Zhu 2012
Transitional circumstellar disks around young stellar objects have a distinctive infrared deficit around 10 microns in their Spectral Energy Distributions (SED), recently measured by the Spitzer Infrared Spectrograph (IRS), suggesting dust depletion in the inner regions. These disks have been confirmed to have giant central cavities by imaging of the submillimeter (sub-mm) continuum emission using the Submillimeter Array (SMA). However, the polarized near-infrared scattered light images for most objects in a systematic IRS/SMA cross sample, obtained by HiCIAO on the Subaru telescope, show no evidence for the cavity, in clear contrast with SMA and Spitzer observations. Radiative transfer modeling indicates that many of these scattered light images are consistent with a smooth spatial distribution for micron-sized grains, with little discontinuity in the surface density of the micron-sized grains at the cavity edge. Here we present a generic disk model that can simultaneously account for the general features in IRS, SMA, and Subaru observations. Particularly, the scattered light images for this model are computed, which agree with the general trend seen in Subaru data. Decoupling between the spatial distributions of the micron-sized dust and mm-sized dust inside the cavity is suggested by the model, which, if confirmed, necessitates a mechanism, such as dust filtration, for differentiating the small and big dust in the cavity clearing process. Our model also suggests an inwardly increasing gas-to-dust-ratio in the inner disk, and different spatial distributions for the small dust inside and outside the cavity, echoing the predictions in grain coagulation and growth models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا