ﻻ يوجد ملخص باللغة العربية
We study the thermal phase transitions of the four-fold degenerate phases (the plaquette and single stripe states) in two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the parameter regions with the plaquette and single stripe phases, respectively. The four-state Potts-critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size scaling analyses. Furthermore, similar behavior of the transition to the four-fold single stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the four-fold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
The universal critical point ratio $Q$ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio $Q$ in the presence o
Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of a
We study the effect of perpendicular single-ion anisotropy, $-As_{text{z}}^2$, on the ground-state structure and finite-temperature properties of a two-dimensional magnetic nanodot in presence of a dipolar interaction of strength $D$. By a simulated
We study the distribution of lengths and other statistical properties of worms constructed by Monte Carlo worm algorithms in the power-law three-sublattice ordered phase of frustrated triangular and kagome lattice Ising antiferromagnets. Viewing each
Thermodynamic properties of the four-dimensional cross-polytope model, the 16-cell model, which is an example of higher dimensional generalizations of the octahedron model, are studied on the square lattice. By means of the corner transfer matrix ren