ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the phase transitions and critical behaviors of the frustrated J1-J2-J3 Ising model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the second next nearest neighbor interaction J3 on the phase transition from a disordered state to the single stripe antiferromagnetic state. A continuous Ashkin-Teller-like transition behavior in a certain range of J3 is identified, while the 4-state Potts-critical end point [J3/J1]C is estimated based on the analytic method reported in earlier work [Jin et al., Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J3 can tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore, it is revealed that an antiferromagnetic J3 can stabilize the staggered dimer state via a phase transition of strong first-order character.
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
Using the parallel tempering algorithm and GPU accelerated techniques, we have performed large-scale Monte Carlo simulations of the Ising model on a square lattice with antiferromagnetic (repulsive) nearest-neighbor(NN) and next-nearest-neighbor(NNN)
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent tra
We investigated the Ising model on a square lattice with ferro and antiferromagnetic interactions modulated by the quasiperiodic Octonacci sequence in both directions of the lattice. We have applied the Replica Exchange Monte Carlo (Parallel Temperin
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z