ترغب بنشر مسار تعليمي؟ اضغط هنا

The classical binary hypothesis testing problem is revisited. We notice that when one of the hypotheses is composite, there is an inherent difficulty in defining an optimality criterion that is both informative and well-justified. For testing in the simple normal location problem (that is, testing for the mean of multivariate Gaussians), we overcome the difficulty as follows. In this problem there exists a natural hardness order between parameters as for different parameters the error-probailities curves (when the parameter is known) are either identical, or one dominates the other. We can thus define minimax performance as the worst-case among parameters which are below some hardness level. Fortunately, there exists a universal minimax test, in the sense that it is minimax for all hardness levels simultaneously. Under this criterion we also find the optimal test for composite hypothesis testing with training data. This criterion extends to the wide class of local asymptotic normal models, in an asymptotic sense where the approximation of the error probabilities is additive. Since we have the asymptotically optimal tests for composite hypothesis testing with and without training data, we quantify the loss of universality and gain of training data for these models.
We consider the classic joint source-channel coding problem of transmitting a memoryless source over a memoryless channel. The focus of this work is on the long-standing open problem of finding the rate of convergence of the smallest attainable expec ted distortion to its asymptotic value, as a function of blocklength $n$. Our main result is that in general the convergence rate is not faster than $n^{-1/2}$. In particular, we show that for the problem of transmitting i.i.d uniform bits over a binary symmetric channels with Hamming distortion, the smallest attainable distortion (bit error rate) is at least $Omega(n^{-1/2})$ above the asymptotic value, if the ``bandwidth expansion ratio is above $1$.
The distributed hypothesis testing problem with full side-information is studied. The trade-off (reliability function) between the two types of error exponents under limited rate is studied in the following way. First, the problem is reduced to the p roblem of determining the reliability function of channel codes designed for detection (in analogy to a similar result which connects the reliability function of distributed lossless compression and ordinary channel codes). Second, a single-letter random-coding bound based on a hierarchical ensemble, as well as a single-letter expurgated bound, are derived for the reliability of channel-detection codes. Both bounds are derived for a system which employs the optimal detection rule. We conjecture that the resulting random-coding bound is ensemble-tight, and consequently optimal within the class of quantization-and-binning schemes.
330 - Eli Haim , Yuval Kochman 2017
We consider the problem of distributed binary hypothesis testing of two sequences that are generated by an i.i.d. doubly-binary symmetric source. Each sequence is observed by a different terminal. The two hypotheses correspond to different levels of correlation between the two source components, i.e., the crossover probability between the two. The terminals communicate with a decision function via rate-limited noiseless links. We analyze the tradeoff between the exponential decay of the two error probabilities associated with the hypothesis test and the communication rates. We first consider the side-information setting where one encoder is allowed to send the full sequence. For this setting, previous work exploits the fact that a decoding error of the source does not necessarily lead to an erroneous decision upon the hypothesis. We provide improved achievability results by carrying out a tighter analysis of the effect of binning error; the results are also more complete as they cover the full exponent tradeoff and all possible correlations. We then turn to the setting of symmetric rates for which we utilize Korner-Marton coding to generalize the results, with little degradation with respect to the performance with a one-sided constraint (side-information setting).
Unlike traditional file transfer where only total delay matters, streaming applications impose delay constraints on each packet and require them to be in order. To achieve fast in-order packet decoding, we have to compromise on the throughput. We stu dy this trade-off between throughput and smoothness in packet decoding. We first consider a point-to-point streaming and analyze how the trade-off is affected by the frequency of block-wise feedback, whereby the source receives full channel state feedback at periodic intervals. We show that frequent feedback can drastically improve the throughput-smoothness trade-off. Then we consider the problem of multicasting a packet stream to two users. For both point-to-point and multicast streaming, we propose a spectrum of coding schemes that span different throughput-smoothness tradeoffs. One can choose an appropriate coding scheme from these, depending upon the delay-sensitivity and bandwidth limitations of the application. This work introduces a novel style of analysis using renewal processes and Markov chains to analyze coding schemes.
In the scalar dirty multiple-access channel, in addition to Gaussian noise, two additive interference signals are present, each known non-causally to a single transmitter. It was shown by Philosof et al. that for strong interferences, an i.i.d. ensem ble of codes does not achieve the capacity region. Rather, a structured-codes approach was presented, that was shown to be optimal in the limit of high signal-to-noise ratios, where the sum-capacity is dictated by the minimal (bottleneck) channel gain. In this paper, we consider the multiple-input multiple-output (MIMO) variant of this setting. In order to incorporate structured codes in this case, one can utilize matrix decompositions that transform the channel into effective parallel scalar dirty multiple-access channels. This approach however suffers from a bottleneck effect for each effective scalar channel and therefore the achievable rates strongly depend on the chosen decomposition. It is shown that a recently proposed decomposition, where the diagonals of the effective channel matrices are equal up to a scaling factor, is optimal at high signal-to-noise ratios, under an equal rank assumption. This approach is then extended to any number of transmitters. Finally, an application to physical-layer network coding for the MIMO two-way relay channel is presented.
The problem of sending a secret message over the Gaussian multiple-input multiple-output (MIMO) wiretap channel is studied. While the capacity of this channel is known, it is not clear how to construct optimal coding schemes that achieve this capacit y. In this work, we use linear operations along with successive interference cancellation to attain effective parallel single-antenna wiretap channels. By using independent scalar Gaussian wiretap codebooks over the resulting parallel channels, the capacity of the MIMO wiretap channel is achieved. The derivation of the schemes is based upon joint triangularization of the channel matrices. We find that the same technique can be used to re-derive capacity expressions for the MIMO wiretap channel in a way that is simple and closely connected to a transmission scheme. This technique allows to extend the previously proven strong security for scalar Gaussian channels to the MIMO case. We further consider the problem of transmitting confidential messages over a two-user broadcast MIMO channel. For that problem, we find that derivation of both the capacity and a transmission scheme is a direct corollary of the proposed analysis for the MIMO wiretap channel.
This work considers the distribution of a secret key over an optical (bosonic) channel in the regime of high photon efficiency, i.e., when the number of secret key bits generated per detected photon is high. While in principle the photon efficiency i s unbounded, there is an inherent tradeoff between this efficiency and the key generation rate (with respect to the channel bandwidth). We derive asymptotic expressions for the optimal generation rates in the photon-efficient limit, and propose schemes that approach these limits up to certain approximations. The schemes are practical, in the sense that they use coherent or temporally-entangled optical states and direct photodetection, all of which are reasonably easy to realize in practice, in conjunction with off-the-shelf classical codes.
An increasing number of streaming applications need packets to be strictly in-order at the receiver. This paper provides a framework for analyzing in-order packet delivery in such applications. We consider the problem of multicasting an ordered strea m of packets to two users over independent erasure channels with instantaneous feedback to the source. Depending upon the channel erasures, a packet which is in-order for one user, may be redundant for the other. Thus there is an inter-dependence between throughput and the smoothness of in-order packet delivery to the two users. We use a Markov chain model of packet decoding to analyze these throughput-smoothness trade-offs of the users, and propose coding schemes that can span different points on each trade-off.
Unlike traditional file transfer where only total delay matters, streaming applications impose delay constraints on each packet and require them to be in order. To achieve fast in-order packet decoding, we have to compromise on the throughput. We stu dy this trade-off between throughput and in-order decoding delay, and in particular how it is affected by the frequency of block-wise feedback to the source. When there is immediate feedback, we can achieve the optimal throughput and delay simultaneously. But as the feedback delay increases, we have to compromise on at least one of these metrics. We present a spectrum of coding schemes that span different points on the throughput-delay trade-off. Depending upon the delay-sensitivity and bandwidth limitations of the application, one can choose an appropriate operating point on this trade-off.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا