ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Reliability Function of Distributed Hypothesis Testing Under Optimal Detection

213   0   0.0 ( 0 )
 نشر من قبل Nir Weinberger
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The distributed hypothesis testing problem with full side-information is studied. The trade-off (reliability function) between the two types of error exponents under limited rate is studied in the following way. First, the problem is reduced to the problem of determining the reliability function of channel codes designed for detection (in analogy to a similar result which connects the reliability function of distributed lossless compression and ordinary channel codes). Second, a single-letter random-coding bound based on a hierarchical ensemble, as well as a single-letter expurgated bound, are derived for the reliability of channel-detection codes. Both bounds are derived for a system which employs the optimal detection rule. We conjecture that the resulting random-coding bound is ensemble-tight, and consequently optimal within the class of quantization-and-binning schemes.



قيم البحث

اقرأ أيضاً

330 - Eli Haim , Yuval Kochman 2017
We consider the problem of distributed binary hypothesis testing of two sequences that are generated by an i.i.d. doubly-binary symmetric source. Each sequence is observed by a different terminal. The two hypotheses correspond to different levels of correlation between the two source components, i.e., the crossover probability between the two. The terminals communicate with a decision function via rate-limited noiseless links. We analyze the tradeoff between the exponential decay of the two error probabilities associated with the hypothesis test and the communication rates. We first consider the side-information setting where one encoder is allowed to send the full sequence. For this setting, previous work exploits the fact that a decoding error of the source does not necessarily lead to an erroneous decision upon the hypothesis. We provide improved achievability results by carrying out a tighter analysis of the effect of binning error; the results are also more complete as they cover the full exponent tradeoff and all possible correlations. We then turn to the setting of symmetric rates for which we utilize Korner-Marton coding to generalize the results, with little degradation with respect to the performance with a one-sided constraint (side-information setting).
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th e type 2 error probability when the type 1 error probability is at most a fixed value. For related problems in distributed source coding, schemes based on random binning perform well and often optimal. For distributed hypothesis testing, however, the use of binning is hindered by the fact that the overall error probability may be dominated by errors in binning process. We show that despite this complication, binning is optimal for a class of problems in which the goal is to test against conditional independence. We then use this optimality result to give an outer bound for a more general class of instances of the problem.
71 - Lin Zhou , Yun Wei , Alfred Hero 2020
We revisit the universal outlier hypothesis testing (Li emph{et al.}, TIT 2014) and derive fundamental limits for the optimal test. In outlying hypothesis testing, one is given multiple observed sequences, where most sequences are generated i.i.d. fr om a nominal distribution. The task is to discern the set of outlying sequences that are generated according to anomalous distributions. The nominal and anomalous distributions are emph{unknown}. We study the tradeoff among the probabilities of misclassification error, false alarm and false reject for tests that satisfy weak conditions on the rate of decrease of these error probabilities as a function of sequence length. Specifically, we propose a threshold-based universal test that ensures exponential decay of misclassification error and false alarm probabilities. We study two constraints on the false reject probabilities, one is that it be a non-vanishing constant and the other is that it have an exponential decay rate. For both cases, we characterize bounds on the false reject probability, as a function of the threshold, for each pair of nominal and anomalous distributions and demonstrate the optimality of our test in the generalized Neyman-Pearson sense. We first consider the case of at most one outlier and then generalize our results to the case of multiple outliers where the number of outliers is unknown and each outlier can follow a different anomalous distribution.
In this paper study the problem of signal detection in Gaussian noise in a distributed setting. We derive a lower bound on the size that the signal needs to have in order to be detectable. Moreover, we exhibit optimal distributed testing strategies that attain the lower bound.
148 - Yuqing Ni , Kemi Ding , Yong Yang 2019
We investigate the impact of Byzantine attacks in distributed detection under binary hypothesis testing. It is assumed that a fraction of the transmitted sensor measurements are compromised by the injected data from a Byzantine attacker, whose purpos e is to confuse the decision maker at the fusion center. From the perspective of a Byzantine attacker, under the injection energy constraint, an optimization problem is formulated to maximize the asymptotic missed detection error probability, which is based on the Kullback-Leibler divergence. The properties of the optimal attack strategy are analyzed by convex optimization and parametric optimization methods. Based on the derived theoretic results, a coordinate descent algorithm is proposed to search the optimal attack solution. Simulation examples are provided to illustrate the effectiveness of the obtained attack strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا