ترغب بنشر مسار تعليمي؟ اضغط هنا

We study thermodynamic properties of Nf=2+1 QCD on the lattice adopting O(a)-improved Wilson quark action and Iwasaki gauge action. To cope with the problems due to explicit violation of the Poincare and chiral symmetries, we apply the Small Flow-tim e eXpansion (SFtX) method based on the gradient flow, which is a general method to correctly calculate any renormalized observables on the lattice. In this method, the matching coefficients in front of operators in the small flow-time expansion are calculated by perturbation theory. In a previous study using one-loop matching coefficients, we found that the SFtX method works well for the equation of state, chiral condensates and susceptibilities. In this paper, we study the effect of two-loop matching coefficients by Harlander et al. We also test the influence of the renormalization scale in the SFtX method. We find that, by adopting the mu_0 renormalization scale of Harlander et al. instead of the conventional mu_d=1/sqrt{8t} scale, the linear behavior at large t is improved so that we can perform the t -> 0 extrapolation of the SFtX method more confidently. In the calculation of the two-loop matching coefficients by Harlander et al., the equation of motion for quark fields was used. For the entropy density in which the equation of motion has no effects, we find that the results using the two-loop coefficients agree well with those using one-loop coefficients. On the other hand, for the trace anomaly which is affected by the equation of motion, we find discrepancies between the one- and two-loop results at high temperatures. By comparing the results of one-loop coefficients with and without using the equation of motion, the main origin of the discrepancies is suggested to be attributed to O((aT)^2)=O(1/N_t^2) discretization errors in the equation of motion at N_t =< 10.
We study correlation functions of the energy-momentum tensor (EMT) in $(2+1)$-flavor full QCD to evaluate QGP viscosities. We adopt nonperturbatively improved Wilson fermion and Iwasaki gauge action. Our degenerate $u$, $d$ quark mass is rather heavy with $m_{pi}/m_{rho}simeq0.63$, while the $s$ quark mass is set to approximately its physical value. Performing simulations on lattices with $N_t=16$ to 6 at a fine lattice spacing of $a=0.07$ fm, the temperature range of $Tsimeq174$--$464$ MeV is covered using the fixed-scale approach. We attempt to compute viscosities by three steps: (1) calculate two point correlation functions of non-perturbatively renormalized EMT applying the gradient flow method, (2) derive the spectral function from correlation function, and (3) extract viscosities from the spectral function applying the Kubo formula. We report on the status of the project and present preliminary results for the shear viscosity in the high temperature phase.
We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in $N_f=2+1$ full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conse rvation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturbatively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing $=0.07$ fm. In this paper the temperature is limited to a single value $T=232$ MeV. The $u$, $d$ quark mass is rather heavy with $m_pi/m_rho=0.63$ while the $s$ quark mass is set to approximately its physical value.
We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two definitions are related by the chiral Ward-Takahashi identity but their coincidence is highly non-trivial for the Wilson fermion. By applying the gradient flow both for the gauge and quark fields we find a good agreement of these two measurements. The other is a verification of a prediction of the dilute instanton gas approximation at low temperature region $T_{pc}< T<1.5T_{pc}$, for which we confirm the prediction that the topological susceptibility decays with power $chi_{t}propto(T/T_{pc})^{-8}$ for three flavors QCD.
We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations on a fine lattice with~$asimeq0.07,mathrm{fm}$ at a heavy $u$, $d$ quark mass with $m_pi/m_rhosimeq0.63$ but approximately physical $s$ quark mass with $m_{eta_{ss}}/m_phisimeq0.74$. In a temperature range from~$Tsimeq174,mathrm{MeV}$ ($N_t=16$) to $697,mathrm{MeV}$ ($N_t=4$), we study two topics on the topological susceptibility. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Because the two definitions are related by chiral Ward-Takahashi identities, their equivalence is not trivial for lattice quarks which violate the chiral symmetry explicitly at finite lattice spacings. The gradient flow method enables us to compute them without being bothered by the chiral violation. We find a good agreement between the two definitions with Wilson quarks. The other is a comparison with a prediction of the dilute instanton gas approximation, which is relevant in a study of axions as a candidate of the dark matter in the evolution of the Universe. We find that the topological susceptibility shows a decrease in $T$ which is consistent with the predicted $chi_mathrm{t}(T) propto (T/T_{rm pc})^{-8}$ for three-flavor QCD even at low temperature $T_{rm pc} < Tle1.5 T_{rm pc}$.
The energy-momentum tensor plays an important role in QCD thermodynamics. Its expectation value contains information of the pressure and the energy density as its diagonal part. Further properties like viscosity and specific heat can be extracted fro m its correlation function. Recently a new method based on the gradient flow was introduced to calculate the energy-momentum tensor on the lattice, and has been successfully applied to quenched QCD. In this paper, we apply the gradient flow method to calculate the energy-momentum tensor in (2+1)-flavor QCD. As the first application of the method with dynamical quarks, we study at a single but fine lattice spacing a=0.07 fm with heavy u and d quarks ($m_pi/m_rho=0.63$) and approximately physical s quark. Performing simulations on lattices with Nt=16 to 4, the temperature range of T=174-697 MeV is covered. We find that the results of the pressure and the energy density by the gradient flow method are consistent with the previous results using the T-integration method at T<280 MeV, while the results show disagreement at T>350 MeV (Nt<8), presumably due to the small-Nt lattice artifact of $O((aT)^2)=O(1/N_t^2)$. We also apply the gradient flow method to evaluate the chiral condensate taking advantage of the gradient flow method that renormalized quantities can be directly computed avoiding the difficulty of explicit chiral violation with lattice quarks. We compute the renormalized chiral condensate in the MS-bar scheme at renormalization scale $mu=2$ GeV with a high precision to study the temperature dependence of the chiral condensate and its disconnected susceptibility. Even with the Wilson-type quark action, we obtain the chiral condensate and its disconnected susceptibility showing a clear signal of pseudocritical temperature at T~190 MeV related to the chiral restoration crossover.
The canonical partition function is related to the grand canonical one through the fugacity expansion and is known to have no sign problem. In this paper we perform the fugacity expansion by a method of the hopping parameter expansion in temporal dir ection for the lattice QCD: winding number expansion. The canonical partition function is constructed for Nf=2 QCD starting from gauge configurations at zero chemical potential. After derivation of the canonical partition function we calculate hadronic observables like chiral condensate and quark number density and the pressure at the real chemical potential.
We calculate non-perturbative renormalization factors at hadronic scale for $Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schr{o}dinger functional method. Combining them with the non-perturbative renormalization group running by the Alpha collaboration, our result yields the fully non-perturbative renormalization factor, which converts the lattice bare $B_K$ to the renormalization group invariant (RGI) $hat{B}_K$. Applying this to the bare $B_K$ previously obtained by the CP-PACS collaboration at $a^{-1}simeq 2, 3, 4$ GeV, we obtain $hat{B}_K=0.782(5)(7)$ (equivalent to $B_K^{bar{rm MS}}({rm NDR}, 2 {rm GeV}) = 0.565(4)(5)$ by 2-loop running) in the continuum limit, where the first error is statistical and the second is systematic due to the continuum extrapolation. Except the quenching error, the total error we have achieved is less than 2%, which is much smaller than the previous ones. Taking the same procedure, we obtain $m_{u,d}^{rm RGI}=5.613(66)$ MeV and $m_s^{rm RGI}=147.1(17)$ MeV (equivalent to $m_{u,d}^{bar{rm MS}}(2 {rm GeV})=4.026(48)$ MeV and $m_{s}^{bar{rm MS}}(2 {rm GeV})=105.6(12)$ MeV by 4-loop running) in the continuum limit.
We present non-perturbative renormalization factors for $Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ previously obtained by the CP-PACS collaboration with the quenched domain-wall QCD(DWQCD). We compare our result with previous ones obtained by perturbative renormalization factors, different renormalization schemes or different quark actions. We also show that chiral symmetry breaking effects in the renormalization factor are numerically small.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا