ﻻ يوجد ملخص باللغة العربية
We study correlation functions of the energy-momentum tensor (EMT) in $(2+1)$-flavor full QCD to evaluate QGP viscosities. We adopt nonperturbatively improved Wilson fermion and Iwasaki gauge action. Our degenerate $u$, $d$ quark mass is rather heavy with $m_{pi}/m_{rho}simeq0.63$, while the $s$ quark mass is set to approximately its physical value. Performing simulations on lattices with $N_t=16$ to 6 at a fine lattice spacing of $a=0.07$ fm, the temperature range of $Tsimeq174$--$464$ MeV is covered using the fixed-scale approach. We attempt to compute viscosities by three steps: (1) calculate two point correlation functions of non-perturbatively renormalized EMT applying the gradient flow method, (2) derive the spectral function from correlation function, and (3) extract viscosities from the spectral function applying the Kubo formula. We report on the status of the project and present preliminary results for the shear viscosity in the high temperature phase.
We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in $N_f=2+1$ full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conse
We compute various (generalized) isovector charges of the octet baryons. These include $g_A$, $g_T$ and $g_S$ as well as the unpolarized, polarized and transversity parton distribution function (PDF) momentum fractions $langle xrangle_{u^+-d^+}$, $la
The chirally improved (CI) fermion action allows us to obtain results for pion masses down to 320 MeV on (in lattice units) comparatively small lattices with physical extent of 2.4 fm. We use differently smeared quarks sources to build sets of severa
We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispers
We present results for the topological susceptibility at nonzero temperature obtained from lattice QCD with four dynamical quark flavours. We apply different smoothing methods, including gradient Wilson flow and over--improved cooling, before calcula