ﻻ يوجد ملخص باللغة العربية
We study temperature dependence of the topological susceptibility with the $N_{f}=2+1$ flavors Wilson fermion. We have two major interests in this paper. One is a comparison of gluonic and fermionic definitions of the topological susceptibility. Two definitions are related by the chiral Ward-Takahashi identity but their coincidence is highly non-trivial for the Wilson fermion. By applying the gradient flow both for the gauge and quark fields we find a good agreement of these two measurements. The other is a verification of a prediction of the dilute instanton gas approximation at low temperature region $T_{pc}< T<1.5T_{pc}$, for which we confirm the prediction that the topological susceptibility decays with power $chi_{t}propto(T/T_{pc})^{-8}$ for three flavors QCD.
We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations
We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility $chi_{rm t}$ is measured directly, and by the slab method, which is based on the topological content of sub-volumes (sl
We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD
In lattice QCD with Wilson-type quarks, the chiral symmetry is explicitly broken by the Wilson term on finite lattices. Though the symmetry is guaranteed to recover in the continuum limit, a series of non-trivial procedures are required to recover th
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral projector method. We use ensembles with dynamical light, strange and charm flavors of m