ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper investigates an intelligent reflecting surface (IRS) aided cooperative communication network, where the IRS exploits large reflecting elements to proactively steer the incident radio-frequency wave towards destination terminals (DTs). As t he number of reflecting elements increases, the reflection resource allocation (RRA) will become urgently needed in this context, which is due to the non-ignorable energy consumption. The goal of this paper, therefore, is to realize the RRA besides the active-passive beamforming design, where RRA is based on the introduced modular IRS architecture. The modular IRS consists with multiple modules, each of which has multiple reflecting elements and is equipped with a smart controller, all the controllers can communicate with each other in a point-to-point fashion via fiber links. Consequently, an optimization problem is formulated to maximize the minimum SINR at DTs, subject to the module size constraint and both individual source terminal (ST) transmit power and the reflecting coefficients constraints. Whereas this problem is NP-hard due to the module size constraint, we develop an approximate solution by introducing the mixed row block $ell_{1,F}$-norm to transform it into a suitable semidefinite relaxation. Finally, numerical results demonstrate the meaningfulness of the introduced modular IRS architecture.
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. Nevertheless, in the actual net work operation, the base station (BS) and IRS may belong to different operators, consequently, the IRS is reluctant to help the BS without any payment. Therefore, this paper investigates price-based reflection resource (elements) allocation strategies for an IRS-aided multiuser multiple-input and single-output (MISO) downlink communication systems, in which all transmissions over the same frequency band. Assuming that the IRS is composed with multiple modules, each of which is attached with a smart controller, thus, the states (active/idle) of module can be operated by its controller, and all controllers can be communicated with each other via fiber links. A Stackelberg game-based alternating direction method of multipliers (ADMM) is proposed to jointly optimize the transmit beamforming at the BS and the passive beamforming of the active modules. Numerical examples are presented to verify the proposed algorithm. It is shown that the proposed scheme is effective in the utilities of both the BS and IRS.
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. In this paper, we study the ado ption of an IRS for downlink multi-user communication from a multi-antenna base station (BS). Nevertheless, in the actual network operation, the IRS operator can be selfish or have its own objectives due to competing/limited resources as well as deployment/maintenance cost. Therefore, in this paper, we develop a Stackelbeg game model to analyze the interaction between the BS and the IRS operator. Specifically, different from the existing studies on IRS that merely focus on tuning the reflection coefficient of all the reflection elements, we consider the reflection resource (elements) management, which can be realized via trigger module selection under our proposed IRS architecture that all the reflection elements are partially controlled by independent switches of controller. A Stackelberg game-based alternating direction method of multipliers (ADMM) is proposed to jointly optimize the transmit beamforming at the BS and the passive beamforming of the triggered reflection modules. Numerical examples are presented to verify the proposed studies. It is shown that the proposed scheme is effective in the utilities of both the BS and IRS.
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple single-antenna source terminal (ST)-DT pairs in two-hop networks is investigated. Different from the previous studies on IRS that merely focused on tuning the reflect ion coefficient of all the reflection elements at IRS, in this paper, we consider the true reflection resource management. Specifically, the true reflection resource management can be realized via trigger module selection based on our proposed IRS architecture that all the reflection elements are partially controlled by multiple parallel switches of controller. As the number of reflection elements increases, the true reflection resource management will become urgently needed in this context, which is due to the non-ignorable energy consumption. Moreover, the proposed modular architecture of IRS is designed to make the reflection elements part independent and controllable. As such, our goal is to maximize the minimum signal-to-interference-plus-noise ratio (SINR) at DTs via a joint trigger module subset selection, transmit power allocation of STs, and the corresponding passive beamforming of the trigger modules, subject to per ST power budgets and module size constraint. Whereas this problem is NP-hard due to the module size constraint, to deal with it, we transform the hard module size constraint into the group sparse constraint by introducing the mixed row block norm, which yields a suitable semidefinite relaxation. Additionally, the parallel alternating direction method of multipliers (PADMM) is proposed to identify the trigger module subset, and then subsequently the transmit power allocation and passive beamforming can be obtained by solving the original minimum SINR maximization problem without the group sparse constraint via partial linearization for generalized fractional programs.
This paper investigates the system spectral efficiency (SE) in reconfigurable intelligent surface (RIS)-aided multiuser multiple-input single-output (MISO) systems, where RIS can reconfigure the propagation environment via a large number of controlla ble and intelligent phase shifters. In order to explore the system SE performance behavior with user proportional fairness for such a system, an optimization problem is formulated to maximize the SE by jointly considering the power allocation at the base station (BS) and phase shift at the RIS, under nonlinear proportional rate fairness constraints. To solve the nonconvex optimization problem, an effective solution is developed, which capitalizes on an iterative algorithm with closed-form expressions, i.e., alternatively optimizing the transmit power at the BS and the reflecting phase shift at the RIS. Numerical simulations are provided to validate the theoretical analysis and assess the performance of the proposed alternative algorithm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا