ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Intelligent Surface for MISO Systems with Proportional Rate Constraints

217   0   0.0 ( 0 )
 نشر من قبل Jun Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the system spectral efficiency (SE) in reconfigurable intelligent surface (RIS)-aided multiuser multiple-input single-output (MISO) systems, where RIS can reconfigure the propagation environment via a large number of controllable and intelligent phase shifters. In order to explore the system SE performance behavior with user proportional fairness for such a system, an optimization problem is formulated to maximize the SE by jointly considering the power allocation at the base station (BS) and phase shift at the RIS, under nonlinear proportional rate fairness constraints. To solve the nonconvex optimization problem, an effective solution is developed, which capitalizes on an iterative algorithm with closed-form expressions, i.e., alternatively optimizing the transmit power at the BS and the reflecting phase shift at the RIS. Numerical simulations are provided to validate the theoretical analysis and assess the performance of the proposed alternative algorithm.



قيم البحث

اقرأ أيضاً

113 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This paper investigates the reconfigurable reflecting surface (RIS)-aided multiple-input-single-output (MISO) systems with imperfect channel state information (CSI), where RIS-related channels are modeled by Rician fading. Considering the overhead an d complexity in practical systems, we employ the low-complexity maximum ratio combining (MRC) beamforming at the base station (BS), and configure the phase shifts of the RIS based on long-term statistical CSI. Specifically, we first estimate the overall channel matrix based on the linear minimum mean square error (LMMSE) estimator, and evaluate the performance of MSE and normalized MSE (NMSE). Then, with the estimated channel, we derive the closed-form expressions of the ergodic rate. The derived expressions show that with Rician RIS-related channels, the rate can maintain at a non-zero value when the transmit power is scaled down proportionally to $1/M$ or $1/N^2$, where $M$ and $N$ are the number of antennas and reflecting elements, respectively. However, if all the RIS-related channels are fully Rayleigh, the transmit power of each user can only be scaled down proportionally to $1/sqrt{M}$ or $1/N$. Finally, numerical results verify the promising benefits from the RIS to traditional MISO systems.
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple single-antenna source terminal (ST)-DT pairs in two-hop networks is investigated. Different from the previous studies on IRS that merely focused on tuning the reflect ion coefficient of all the reflection elements at IRS, in this paper, we consider the true reflection resource management. Specifically, the true reflection resource management can be realized via trigger module selection based on our proposed IRS architecture that all the reflection elements are partially controlled by multiple parallel switches of controller. As the number of reflection elements increases, the true reflection resource management will become urgently needed in this context, which is due to the non-ignorable energy consumption. Moreover, the proposed modular architecture of IRS is designed to make the reflection elements part independent and controllable. As such, our goal is to maximize the minimum signal-to-interference-plus-noise ratio (SINR) at DTs via a joint trigger module subset selection, transmit power allocation of STs, and the corresponding passive beamforming of the trigger modules, subject to per ST power budgets and module size constraint. Whereas this problem is NP-hard due to the module size constraint, to deal with it, we transform the hard module size constraint into the group sparse constraint by introducing the mixed row block norm, which yields a suitable semidefinite relaxation. Additionally, the parallel alternating direction method of multipliers (PADMM) is proposed to identify the trigger module subset, and then subsequently the transmit power allocation and passive beamforming can be obtained by solving the original minimum SINR maximization problem without the group sparse constraint via partial linearization for generalized fractional programs.
147 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This letter investigates the reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with a two-timescale design. First, the zero-forcing (ZF) detector is applied at the base station (BS) based on instanta neous aggregated CSI, which is the superposition of the direct channel and the cascaded user-RIS-BS channel. Then, by leveraging the channel statistical property, we derive the closed-form ergodic achievable rate expression. Using a gradient ascent method, we design the RIS passive beamforming only relying on the long-term statistical CSI. We prove that the ergodic rate can reap the gains on the order of $mathcal{O}left(log_{2}left(MNright)right)$, where $M$ and $N$ denote the number of BS antennas and RIS elements, respectively. We also prove the striking superiority of the considered RIS-aided system with ZF detectors over the RIS-free systems and RIS-aided systems with maximum-ratio combining (MRC).
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived based on maximum ratio transmission (MRT) and additive quantization noise model (AQNM), and the rate maximization problem is solved by particle swarm optimization (PSO) method under both continuous phase shifts (CPSs) and discrete phase shifts (DPSs) at the RIS. Simulation results show that the downlink sum achievable rate tends to a constant with the increase of the number of quantization bits of DACs, and four quantization bits are enough to capture a large portion of the performance of the ideal perfect DACs case.
In frequency division duplexing systems, the base station (BS) acquires downlink channel state information (CSI) via channel feedback, which has not been adequately investigated in the presence of RIS. In this study, we examine the limited channel fe edback scheme by proposing a novel cascaded codebook and an adaptive bit partitioning strategy. The RIS segments the channel between the BS and mobile station into two sub-channels, each with line-of-sight (LoS) and non-LoS (NLoS) paths. To quantize the path gains, the cascaded codebook is proposed to be synthesized by two sub-codebooks whose codeword is cascaded by LoS and NLoS components. This enables the proposed cascaded codebook to cater the different distributions of LoS and NLoS path gains by flexibly using different feedback bits to design the codeword structure. On the basis of the proposed cascaded codebook, we derive an upper bound on ergodic rate loss with maximum ratio transmission and show that the rate loss can be cut down by optimizing the feedback bit allocation during codebook generation. To minimize the upper bound, we propose a bit partitioning strategy that is adaptive to diverse environment and system parameters. Extensive simulations are presented to show the superiority and robustness of the cascaded codebook and the efficiency of the adaptive bit partitioning scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا