ترغب بنشر مسار تعليمي؟ اضغط هنا

A Stackelberg Game Approach to Resource Allocation for Intelligent Reflecting Surface Aided Communications

90   0   0.0 ( 0 )
 نشر من قبل Jun Zhao
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. In this paper, we study the adoption of an IRS for downlink multi-user communication from a multi-antenna base station (BS). Nevertheless, in the actual network operation, the IRS operator can be selfish or have its own objectives due to competing/limited resources as well as deployment/maintenance cost. Therefore, in this paper, we develop a Stackelbeg game model to analyze the interaction between the BS and the IRS operator. Specifically, different from the existing studies on IRS that merely focus on tuning the reflection coefficient of all the reflection elements, we consider the reflection resource (elements) management, which can be realized via trigger module selection under our proposed IRS architecture that all the reflection elements are partially controlled by independent switches of controller. A Stackelberg game-based alternating direction method of multipliers (ADMM) is proposed to jointly optimize the transmit beamforming at the BS and the passive beamforming of the triggered reflection modules. Numerical examples are presented to verify the proposed studies. It is shown that the proposed scheme is effective in the utilities of both the BS and IRS.

قيم البحث

اقرأ أيضاً

This paper investigates an intelligent reflecting surface (IRS) aided cooperative communication network, where the IRS exploits large reflecting elements to proactively steer the incident radio-frequency wave towards destination terminals (DTs). As t he number of reflecting elements increases, the reflection resource allocation (RRA) will become urgently needed in this context, which is due to the non-ignorable energy consumption. The goal of this paper, therefore, is to realize the RRA besides the active-passive beamforming design, where RRA is based on the introduced modular IRS architecture. The modular IRS consists with multiple modules, each of which has multiple reflecting elements and is equipped with a smart controller, all the controllers can communicate with each other in a point-to-point fashion via fiber links. Consequently, an optimization problem is formulated to maximize the minimum SINR at DTs, subject to the module size constraint and both individual source terminal (ST) transmit power and the reflecting coefficients constraints. Whereas this problem is NP-hard due to the module size constraint, we develop an approximate solution by introducing the mixed row block $ell_{1,F}$-norm to transform it into a suitable semidefinite relaxation. Finally, numerical results demonstrate the meaningfulness of the introduced modular IRS architecture.
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. Nevertheless, in the actual net work operation, the base station (BS) and IRS may belong to different operators, consequently, the IRS is reluctant to help the BS without any payment. Therefore, this paper investigates price-based reflection resource (elements) allocation strategies for an IRS-aided multiuser multiple-input and single-output (MISO) downlink communication systems, in which all transmissions over the same frequency band. Assuming that the IRS is composed with multiple modules, each of which is attached with a smart controller, thus, the states (active/idle) of module can be operated by its controller, and all controllers can be communicated with each other via fiber links. A Stackelberg game-based alternating direction method of multipliers (ADMM) is proposed to jointly optimize the transmit beamforming at the BS and the passive beamforming of the active modules. Numerical examples are presented to verify the proposed algorithm. It is shown that the proposed scheme is effective in the utilities of both the BS and IRS.
99 - Tong Bai , Cunhua Pan , Hong Ren 2020
Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising technique to provide both enhanced computational capability and sustainable energy supply to massive low-power wireless devices. However, its energy consumption become s substantial, when the transmission link used for wireless energy transfer (WET) and for computation offloading is hostile. To mitigate this hindrance, we propose to employ the emerging technique of intelligent reflecting surface (IRS) in WP-MEC systems, which is capable of providing an additional link both for WET and for computation offloading. Specifically, we consider a multi-user scenario where both the WET and the computation offloading are based on orthogonal frequency-division multiplexing (OFDM) systems. Built on this model, an innovative framework is developed to minimize the energy consumption of the IRS-aided WP-MEC network, by optimizing the power allocation of the WET signals, the local computing frequencies of wireless devices, both the sub-band-device association and the power allocation used for computation offloading, as well as the IRS reflection coefficients. The major challenges of this optimization lie in the strong coupling between the settings of WET and of computing as well as the unit-modules constraint on IRS reflection coefficients. To tackle these issues, the technique of alternative optimization is invoked for decoupling the WET and computing designs, while two sets of locally optimal IRS reflection coefficients are provided for WET and for computation offloading separately relying on the successive convex approximation method. The numerical results demonstrate that our proposed scheme is capable of monumentally outperforming the conventional WP-MEC network without IRSs.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
108 - Wen Wang , Hui Tian , Wanli Ni 2020
In this letter, we study the secure communication problem in the unmanned aerial vehicle (UAV) enabled networks aided by an intelligent reflecting surface (IRS) from the physical-layer security perspective. Specifically, the IRS is deployed to assi st the wireless transmission from the UAV to the ground user in the presence of an eavesdropper. The objective of this work is to maximize the secrecy rate by jointly optimizing the phase shifts at the IRS as well as the transmit power and location of the UAV. However, the formulated problem is difficult to solve directly due to the non-linear and non-convex objective function and constraints. By invoking fractional programming and successive convex approximation techniques, the original problem is decomposed into three subproblems, which are then transformed into convex ones. Next, a low-complexity alternating algorithm is proposed to solve the challenging non-convex problem effectively, where the closed-form expressions for transmit power and phase shifts are obtained at each iteration. Simulations results demonstrate that the designed algorithm for IRS-aided UAV communications can achieve higher secrecy rate than benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا