ترغب بنشر مسار تعليمي؟ اضغط هنا

We studied the curvature-driven roughening of a disk domain pattern with a variable interface window. The relaxation of interface is driven by negative surface tension . When a domain boundary propagates radially at a constant rate, we found that evo lution of interface roughness follows scaling dynamic behavior. The local growth exponents are substantially different from the global exponents. Curvature-driven roughening belongs to a new class of anomalous roughening dynamics. However, a different surface tension leads to different global exponents. This is different from that of interface evolution with a fixed-size window, which has universal exponent. The variable growth window leads to a new class of anomalous roughening dynamics.
We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear time-dependent change with rega rd to both perimeter and area of a domain. An autocorrelation analysis of time-development of the dynamics of the perimeter and area revealed a strong geometric correlation between neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dynamic pattern are reproduced by a diffusion-controlled geometric model.
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula r or beeline motion in a circular Petri dish. The motion of a droplet depends on volume of the droplet and concentration of solution. The velocity decreases when volume of the droplet and concentration of solution increase. Such unique motion is discussed in terms of Marangoni-driven spreading under chemical nonequilibrium. The simulation reproduces the mode of motion in a circular Petri dish.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا