ﻻ يوجد ملخص باللغة العربية
We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear time-dependent change with regard to both perimeter and area of a domain. An autocorrelation analysis of time-development of the dynamics of the perimeter and area revealed a strong geometric correlation between neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dynamic pattern are reproduced by a diffusion-controlled geometric model.
The ability to robustly and efficiently control the dynamics of nonlinear systems lies at the heart of many current technological challenges, ranging from drug delivery systems to ensuring flight safety. Most such scenarios are too complex to tackle
Applying the method of integral estimates to the analysis of three-wave processes we derive the sufficient criteria for the hard loss of stability of the charged plane surface of liquids with different physical properties. The influence of higher-ord
The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensio
A previously unreported regime of type III intermittency is observed in a vertically vibrated milliliter-sized liquid drop submerged in a more viscous and less dense immiscible fluid layer supported by a hydrophobic solid plate. As the vibration ampl
A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e. rivulet structures) to modu